Projects that are tagged with experimental design.


Logo BayesOpt, a Bayesian Optimization toolbox 0.7.1

by rmcantin - July 3, 2014, 00:30:50 CET [ Project Homepage BibTeX Download ] 7117 views, 1491 downloads, 3 subscriptions

About: BayesOpt is an efficient, C++ implementation of the Bayesian optimization methodology for nonlinear-optimization, experimental design and stochastic bandits. In the literature it is also called Sequential Kriging Optimization (SKO) or Efficient Global Optimization (EGO). There are also interfaces for C, Matlab/Octave and Python.

Changes:

-Added MI criterion

-Simplified Python install

-Fixed bugs in annealed criteria


Logo NearOED 1.0

by gabobert - July 11, 2013, 16:54:12 CET [ Project Homepage BibTeX Download ] 936 views, 242 downloads, 1 subscription

About: The toolbox from the paper Near-optimal Experimental Design for Model Selection in Systems Biology (Busetto et al. 2013, submitted) implemented in MATLAB.

Changes:

Initial Announcement on mloss.org.


About: This toolbox provides functions for maximizing and minimizing submodular set functions, with applications to Bayesian experimental design, inference in Markov Random Fields, clustering and others.

Changes:
  • Modified specification of optional parameters (using sfo_opt)
  • Added sfo_ls_lazy for maximizing nonnegative submodular functions
  • Added sfo_fn_infogain, sfo_fn_lincomb, sfo_fn_invert, ...
  • Added additional documentation and more examples
  • Now Octave ready