Projects that are tagged with clustering.
Showing Items 1-20 of 39 on page 1 of 2: 1 2 Next

Logo The Statistical ToolKit 0.8.2

by joblion - November 17, 2014, 20:29:50 CET [ Project Homepage BibTeX Download ] 196 views, 48 downloads, 2 subscriptions

About: STK++: A Statistical Toolkit Framework in C++

Changes:

Updating description


Logo JMLR dlib ml 18.11

by davis685 - November 13, 2014, 23:42:18 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 85933 views, 14856 downloads, 2 subscriptions

About: This project is a C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real world problems.

Changes:

This release contains mostly minor bug fixes and usability improvements, with the notable exception of new routines for extracting local-binary-pattern features from images and improved tools for learning distance metrics.


Logo Hub Miner 1.0

by nenadtomasev - November 12, 2014, 19:41:43 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 282 views, 40 downloads, 1 subscription

About: Hubness-aware Machine Learning for High-dimensional Data

Changes:

Initial Announcement on mloss.org.


Logo libcluster 2.1

by dsteinberg - October 31, 2014, 23:27:57 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 405 views, 70 downloads, 2 subscriptions

About: An extensible C++ library of Hierarchical Bayesian clustering algorithms, such as Bayesian Gaussian mixture models, variational Dirichlet processes, Gaussian latent Dirichlet allocation and more.

Changes:

Initial Announcement on mloss.org.


Logo pSpectralClustering 1.1

by tbuehler - July 30, 2014, 19:44:52 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 5334 views, 1204 downloads, 2 subscriptions

About: A generalized version of spectral clustering using the graph p-Laplacian.

Changes:
  • fixed compatibility issue with Matlab R2013a+
  • several internal optimizations

Logo APCluster 1.3.5

by UBod - June 30, 2014, 08:32:01 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 17341 views, 3137 downloads, 2 subscriptions

Rating Whole StarWhole StarWhole StarWhole Star1/2 Star
(based on 2 votes)

About: The apcluster package implements Frey's and Dueck's Affinity Propagation clustering in R. The package further provides leveraged affinity propagation, exemplar-based agglomerative clustering, and various tools for visual analysis of clustering results.

Changes:
  • memory access fixes in C++ code called from apclusterL()
  • minor updates of vignette

Logo WEKA 3.7.11

by mhall - April 24, 2014, 10:13:12 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 40804 views, 5958 downloads, 2 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 6 votes)

About: The Weka workbench contains a collection of visualization tools and algorithms for data analysis and predictive modelling, together with graphical user interfaces for easy access to this [...]

Changes:

In core weka:

  • Bagging and RandomForest are now faster if the base learner is a WeightedInstancesHandler
  • Speed-ups for REPTree and other classes that use entropy calculations
  • Many other code improvements and speed-ups
  • Additional statistics available in the output of LinearRegression and SimpleLinearRegression. Contributed by Chris Meyer
  • Reduced memory consumption in BayesNet
  • Improvements to the package manager: load status of individual packages can now be toggled to prevent a package from loading; "Available" button now displays the latest version of all available packages that are compatible with the base version of Weka
  • RandomizableFilteredClassifier
  • Canopy clusterer
  • ImageViewer KnowledgeFlow component
  • PMML export support for Logistic. Infrastructure and changes contributed by David Person
  • Extensive tool-tips now displayed in the Explorer's scheme selector tree lists
  • Join KnowledgeFlow component for performing an inner join on two incoming streams/data sets

In packages:

  • IWSSembeded package, contributed by Pablo Bermejo
  • CVAttributeEval package, contributed by Justin Liang
  • distributedWeka package for Hadoop
  • Improvements to multiLayerPerceptrons and addtion of MLPAutoencoder
  • Code clean-up in many packages

Logo libAGF 0.9.7

by Petey - April 15, 2014, 04:55:41 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 8713 views, 1740 downloads, 1 subscription

About: C++ software for statistical classification, probability estimation and interpolation/non-linear regression using variable bandwidth kernel estimation.

Changes:

New in Version 0.9.7:

  • multi-class classification generalizes class-borders algorithm using a recursive control language
  • hierarchical clustering
  • improved pre-processing

Logo DRVQ 1.0.1-beta

by iavr - January 18, 2014, 17:26:34 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 1116 views, 287 downloads, 1 subscription

About: DRVQ is a C++ library implementation of dimensionality-recursive vector quantization, a fast vector quantization method in high-dimensional Euclidean spaces under arbitrary data distributions. It is an approximation of k-means that is practically constant in data size and applies to arbitrarily high dimensions but can only scale to a few thousands of centroids. As a by-product of training, a tree structure performs either exact or approximate quantization on trained centroids, the latter being not very precise but extremely fast.

Changes:

Initial Announcement on mloss.org.


Logo ELKI 0.6.0

by erich - January 10, 2014, 18:32:28 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 10789 views, 1935 downloads, 3 subscriptions

About: ELKI is a framework for implementing data-mining algorithms with support for index structures, that includes a wide variety of clustering and outlier detection methods.

Changes:

Additions and Improvements from ELKI 0.5.5:

Algorithms

Clustering:

  • Hierarchical Clustering - the slower naive variants were added, and the code was refactored
  • Partition extraction from hierarchical clusterings - different linkage strategies (e.g. Ward)
  • Canopy pre-Clustering
  • Naive Mean-Shift Clustering
  • Affinity propagation clustering (both with distances and similarities / kernel functions)
  • K-means variations: Best-of-multiple-runs, bisecting k-means
  • New k-means initialization: farthest points, sample initialization
  • Cheng and Church Biclustering
  • P3C Subspace Clustering
  • One-dimensional clustering algorithm based on kernel density estimation

Outlier detection

  • COP - correlation outlier probabilities
  • LDF - a kernel density based LOF variant
  • Simplified LOF - a simpler version of LOF (not using reachability distance)
  • Simple Kernel Density LOF - a simple LOF using kernel density (more consistent than LDF)
  • Simple outlier ensemble algorithm
  • PINN - projection indexed nearest neighbors, via projected indexes.
  • ODIN - kNN graph based outlier detection
  • DWOF - Dynamic-Window Outlier Factor (contributed by Omar Yousry)
  • ABOD refactored, into ABOD, FastABOD and LBABOD

Distances

  • Geodetic distances now support different world models (WGS84 etc.) and are subtantially faster.
  • Levenshtein distances for processing strings, e.g. for analyzing phonemes (contributed code, see "Word segmentation through cross-lingual word-to-phoneme alignment", SLT2013, Stahlberg et al.)
  • Bray-Curtis, Clark, Kulczynski1 and Lorentzian distances with R-tree indexing support
  • Histogram matching distances
  • Probabilistic divergence distances (Jeffrey, Jensen-Shannon, Chi2, Kullback-Leibler)
  • Kulczynski2 similarity
  • Kernel similarity code has been refactored, and additional kernel functions have been added

Database Layer and Data Types

Projection layer * Parser for simple textual data (for use with Levenshtein distance) Various random projection families (including Feature Bagging, Achlioptas, and p-stable) Latitude+Longitude to ECEF Sparse vector improvements and bug fixes New filter: remove NaN values and missing values New filter: add histogram-based jitter New filter: normalize using statistical distributions New filter: robust standardization using Median and MAD New filter: Linear discriminant analysis (LDA)

Index Layer

  • Another speed up in R-trees
  • Refactoring of M- and R-trees: Support for different strategies in M-tree New strategies for M-tree splits Speedups in M-tree
  • New index structure: in-memory k-d-tree
  • New index structure: in-memory Locality Sensitive Hashing (LSH)
  • New index structure: approximate projected indexes, such as PINN
  • Index support for geodetic data - (Details: Geodetic Distance Queries on R-Trees for Indexing Geographic Data, SSTD13)
  • Sampled k nearest neighbors: reference KDD13 "Subsampling for Efficient and Effective Unsupervised Outlier Detection Ensembles"
  • Cached (precomputed) k-nearest neighbors to share across multiple runs
  • Benchmarking "algorithms" for indexes

Mathematics and Statistics

  • Many new distributions have been added, now 28 different distributions are supported
  • Additional estimation methods (using advanced statistics such as L-Moments), now 44 estimators are available
  • Trimming and Winsorizing
  • Automatic best-fit distribution estimation
  • Preprocessor using these distributions for rescaling data sets
  • API changes related to the new distributions support
  • More kernel density functions
  • RANSAC covariance matrix builder (unfortunately rather slow)

Visualization

  • 3D projected coordinates (Details: Interactive Data Mining with 3D-Parallel-Coordinate-Trees, SIGMOD2013)
  • Convex hulls now also include nested hierarchical clusters

Other

  • Parser speedups
  • Sparse vector bug fixes and improvements
  • Various bug fixes
  • PCA, MDS and LDA filters
  • Text output was slightly improved (but still needs to be redesigned from scratch - please contribute!)
  • Refactoring of hierarchy classes
  • New heap classes and infrastructure enhancements
  • Classes can have aliases, e.g. "l2" for euclidean distance.
  • Some error messages were made more informative.
  • Benchmarking classes, also for approximate nearest neighbor search.

Logo Malheur 0.5.4

by konrad - December 25, 2013, 13:20:31 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 12838 views, 2461 downloads, 1 subscription

About: Automatic Analysis of Malware Behavior using Machine Learning

Changes:

Support for new version of libarchive. Minor bug fixes.


Logo Gesture Recogition Toolkit 0.1 Revision 289

by ngillian - December 13, 2013, 22:59:53 CET [ Project Homepage BibTeX Download ] 3745 views, 689 downloads, 1 subscription

About: The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library that has been specifically designed for real-time gesture recognition. It features a large number of machine-learning algorithms for both classification and regression in addition to a wide range of supporting algorithms for pre-processing, feature extraction and dataset management. The GRT has been designed for real-time gesture recognition, but it can also be applied to more general machine-learning tasks.

Changes:

Added Decision Tree and Random Forests.


Logo FABIA 2.8.0

by hochreit - October 18, 2013, 10:14:57 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 9445 views, 1972 downloads, 1 subscription

Rating Whole StarWhole StarWhole StarWhole Star1/2 Star
(based on 1 vote)

About: FABIA is a biclustering algorithm that clusters rows and columns of a matrix simultaneously. Consequently, members of a row cluster are similar to each other on a subset of columns and, analogously, members of a column cluster are similar to each other on a subset of rows. Biclusters are found by factor analysis where both the factors and the loading matrix are sparse. FABIA is a multiplicative model that extracts linear dependencies between samples and feature patterns. Applications include detection of transcriptional modules in gene expression data and identification of haplotypes/>identity by descent< consisting of rare variants obtained by next generation sequencing.

Changes:

CHANGES IN VERSION 2.8.0

NEW FEATURES

o rescaling of lapla
o extractPlot does not plot sorted matrices

CHANGES IN VERSION 2.4.0

o spfabia bugfixes

CHANGES IN VERSION 2.3.1

NEW FEATURES

o Getters and setters for class Factorization

2.0.0:

  • spfabia: fabia for a sparse data matrix (in sparse matrix format) and sparse vector/matrix computations in the code to speed up computations. spfabia applications: (a) detecting >identity by descent< in next generation sequencing data with rare variants, (b) detecting >shared haplotypes< in disease studies based on next generation sequencing data with rare variants;
  • fabia for non-negative factorization (parameter: non_negative);
  • changed to C and removed dependencies to Rcpp;
  • improved update for lambda (alpha should be smaller, e.g. 0.03);
  • introduced maximal number of row elements (lL);
  • introduced cycle bL when upper bounds nL or lL are effective;
  • reduced computational complexity;
  • bug fixes: (a) update formula for lambda: tighter approximation, (b) corrected inverse of the conditional covariance matrix of z;

1.4.0:

  • New option nL: maximal number of biclusters per row element;
  • Sort biclusters according to information content;
  • Improved and extended preprocessing;
  • Update to R2.13

Logo Apache Mahout 0.8

by gsingers - July 27, 2013, 15:52:32 CET [ Project Homepage BibTeX Download ] 15665 views, 4302 downloads, 2 subscriptions

About: Apache Mahout is an Apache Software Foundation project with the goal of creating both a community of users and a scalable, Java-based framework consisting of many machine learning algorithm [...]

Changes:

Apache Mahout 0.8 contains, amongst a variety of performance improvements and bug fixes, an implementation of Streaming K-Means, deeper Lucene/Solr integration and new scalable recommender algorithms. For a full description of the newest release, see http://mahout.apache.org/.


About: This toolbox implements a novel visualization technique called Sectors on Sectors (SonS), and a extended version called Multidimensional Sectors on Sectors (MDSonS), for improving the interpretation of several data mining algorithms. The MDSonS method makes use of Multidimensional Scaling (MDS) to solve the main drawback of the previous method, namely, the lack of representing distances between pairs of clusters. These methods have been applied for visualizing the results of hierarchical clustering, Growing Hierarchical Self-Organizing Maps (GHSOM), classification trees and several manifolds. These methods make possible to extract all the existing relationships among centroids’ attributes at any hierarchy level.

Changes:

Initial Announcement on mloss.org.


Logo ClusterEval 1.0

by cdevries - June 16, 2013, 04:15:30 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 1637 views, 515 downloads, 1 subscription

About: Cluster quality Evaluation software. Implements cluster quality metrics based on ground truths such as Purity, Entropy, Negentropy, F1 and NMI. It includes a novel approach to correct for pathological or ineffective clusterings called 'Divergence from a Random Baseline'.

Changes:

Initial Announcement on mloss.org.


Logo Cognitive Foundry 3.3.3

by Baz - May 21, 2013, 05:59:37 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 16924 views, 2687 downloads, 2 subscriptions

About: The Cognitive Foundry is a modular Java software library of machine learning components and algorithms designed for research and applications.

Changes:
  • General:
    • Made code able to compile under both Java 1.6 and 1.7. This required removing some potentially unsafe methods that used varargs with generics.
    • Upgraded XStream dependency to 1.4.4.
    • Improved support for regression algorithms in learning.
    • Added general-purpose adapters to make it easier to compose learning algorithms and adapt their input or output.
  • Common Core:
    • Added isSparse, toArray, dotDivide, and dotDivideEquals methods for Vector and Matrix.
    • Added scaledPlus, scaledPlusEquals, scaledMinus, and scaledMinusEquals to Ring (and thus Vector and Matrix) for potentially faster such operations.
    • Fixed issue where matrix and dense vector equals was not checking for equal dimensionality.
    • Added transform, transformEquals, tranformNonZeros, and transformNonZerosEquals to Vector.
    • Made LogNumber into a signed version of a log number and moved the prior unsigned implementation into UnsignedLogNumber.
    • Added EuclideanRing interface that provides methods for times, timesEquals, divide, and divideEquals. Also added Field interface that provides methods for inverse and inverseEquals. These interfaces are now implemented by the appropriate number classes such as ComplexNumber, MutableInteger, MutableLong, MutableDouble, LogNumber, and UnsignedLogNumber.
    • Added interface for Indexer and DefaultIndexer implementation for creating a zero-based indexing of values.
    • Added interfaces for MatrixFactoryContainer and DivergenceFunctionContainer.
    • Added ReversibleEvaluator, which various identity functions implement as well as a new utility class ForwardReverseEvaluatorPair to create a reversible evaluator from a pair of other evaluators.
    • Added method to create an ArrayList from a pair of values in CollectionUtil.
    • ArgumentChecker now properly throws assertion errors for NaN values. Also added checks for long types.
    • Fixed handling of Infinity in subtraction for LogMath.
    • Fixed issue with angle method that would cause a NaN if cosine had a rounding error.
    • Added new createMatrix methods to MatrixFactory that initializes the Matrix with the given value.
    • Added copy, reverse, and isEmpty methods for several array types to ArrayUtil.
    • Added utility methods for creating a HashMap, LinkedHashMap, HashSet, or LinkedHashSet with an expected size to CollectionUtil.
    • Added getFirst and getLast methods for List types to CollectionUtil.
    • Removed some calls to System.out and Exception.printStackTrace.
  • Common Data:
    • Added create method for IdentityDataConverter.
    • ReversibleDataConverter now is an extension of ReversibleEvaluator.
  • Learning Core:
    • Added general learner transformation capability to make it easier to adapt and compose algorithms. InputOutputTransformedBatchLearner provides this capability for supervised learning algorithms by composing together a triplet. CompositeBatchLearnerPair does it for a pair of algorithms.
    • Added a constant and identity learners.
    • Added Chebyshev, Identity, and Minkowski distance metrics.
    • Added methods to DatasetUtil to get the output values for a dataset and to compute the sum of weights.
    • Made generics more permissive for supervised cost functions.
    • Added ClusterDistanceEvaluator for taking a clustering that encodes the distance from an input value to all clusters and returns the result as a vector.
    • Fixed potential round-off issue in decision tree splitter.
    • Added random subspace technique, implemented in RandomSubspace.
    • Separated functionality from LinearFunction into IdentityScalarFunction. LinearFunction by default is the same, but has parameters that can change the slope and offset of the function.
    • Default squashing function for GeneralizedLinearModel and DifferentiableGeneralizedLinearModel is now a linear function instead of an atan function.
    • Added a weighted estimator for the Poisson distribution.
    • Added Regressor interface for evaluators that are the output of (single-output) regression learning algorithms. Existing such evaluators have been updated to implement this interface.
    • Added support for regression ensembles including additive and averaging ensembles with and without weights. Added a learner for regression bagging in BaggingRegressionLearner.
    • Added a simple univariate regression class in UnivariateLinearRegression.
    • MultivariateDecorrelator now is a VectorInputEvaluator and VectorOutputEvaluator.
    • Added bias term to PrimalEstimatedSubGradient.
  • Text Core:
    • Fixed issue with the start position for tokens from LetterNumberTokenizer being off by one except for the first one.

Logo MLDemos 0.5.1

by basilio - March 2, 2013, 16:06:13 CET [ Project Homepage BibTeX Download ] 18920 views, 4464 downloads, 2 subscriptions

About: MLDemos is a user-friendly visualization interface for various machine learning algorithms for classification, regression, clustering, projection, dynamical systems, reward maximisation and reinforcement learning.

Changes:

New Visualization and Dataset Features Added 3D visualization of samples and classification, regression and maximization results Added Visualization panel with individual plots, correlations, density, etc. Added Editing tools to drag/magnet data, change class, increase or decrease dimensions of the dataset Added categorical dimensions (indexed dimensions with non-numerical values) Added Dataset Editing panel to swap, delete and rename dimensions, classes or categorical values Several bug-fixes for display, import/export of data, classification performance

New Algorithms and methodologies Added Projections to pre-process data (which can then be classified/regressed/clustered), with LDA, PCA, KernelPCA, ICA, CCA Added Grid-Search panel for batch-testing ranges of values for up to two parameters at a time Added One-vs-All multi-class classification for non-multi-class algorithms Trained models can now be kept and tested on new data (training on one dataset, testing on another) Added a dataset generator panel for standard toy datasets (e.g. swissroll, checkerboard,...) Added a number of clustering, regression and classification algorithms (FLAME, DBSCAN, LOWESS, CCA, KMEANS++, GP Classification, Random Forests) Added Save/Load Model option for GMMs and SVMs Added Growing Hierarchical Self Organizing Maps (original code by Michael Dittenbach) Added Automatic Relevance Determination for SVM with RBF kernel (Thanks to Ashwini Shukla!)


Logo Orange 2.6

by janez - February 14, 2013, 18:15:08 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 12007 views, 2327 downloads, 1 subscription

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 1 vote)

About: Orange is a component-based machine learning and data mining software. It includes a friendly yet powerful and flexible graphical user interface for visual programming. For more advanced use(r)s, [...]

Changes:

The core of the system (except the GUI) no longer includes any GPL code and can be licensed under the terms of BSD upon request. The graphical part remains under GPL.

Changed the BibTeX reference to the paper recently published in JMLR MLOSS.


Logo Divvy 1.1.1

by jlewis - November 14, 2012, 20:21:29 CET [ Project Homepage BibTeX Download ] 1777 views, 890 downloads, 1 subscription

About: Divvy is a Mac OS X application for performing dimensionality reduction, clustering, and visualization.

Changes:

Initial Announcement on mloss.org.


Showing Items 1-20 of 39 on page 1 of 2: 1 2 Next