Projects that are tagged with classification.
Showing Items 41-60 of 77 on page 3 of 4: Previous 1 2 3 4 Next

Logo Kernel Machine Library 0.2

by pawelm - December 27, 2011, 17:14:01 CET [ Project Homepage BibTeX BibTeX for corresponding Paper ] 5387 views, 222 downloads, 1 subscription

About: The Kernel-Machine Library is a free (released under the LGPL) C++ library to promote the use of and progress of kernel machines.

Changes:

Updated mloss entry (minor fixes).


Logo PyMVPA Multivariate Pattern Analysis in Python 2.0.0

by yarikoptic - December 22, 2011, 01:36:32 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 34865 views, 6214 downloads, 1 subscription

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 2 votes)

About: Python module to ease pattern classification analyses of large datasets. It provides high-level abstraction of typical processing steps (e.g. data preparation, classification, feature selection, [...]

Changes:
  • 2.0.0 (Mon, Dec 19 2011)

This release aggregates all the changes occurred between official releases in 0.4 series and various snapshot releases (in 0.5 and 0.6 series). To get better overview of high level changes see :ref:release notes for 0.5 <chap_release_notes_0.5> and :ref:0.6 <chap_release_notes_0.6> as well as summaries of release candidates below

  • Fixes (23 BF commits)

    • significance level in the right tail was fixed to include the value tested -- otherwise resulted in optimistic bias (or absurdly high significance in improbable case if all estimates having the same value)
    • compatible with the upcoming IPython 0.12 and renamed sklearn (Fixes #57)
    • do not double-train slave classifiers while assessing sensitivities (Fixes #53)
  • Enhancements (30 ENH + 3 NF commits)

    • resolving voting ties in kNN based on mean distance, and randomly in SMLR
    • :class:kNN's ca.estimates now contains dictionaries with votes for each class
    • consistent zscoring in :class:Hyperalignment
  • 2.0.0~rc5 (Wed, Oct 19 2011)

  • Major: to allow easy co-existence of stable PyMVPA 0.4.x, 0.6 development mvpa module was renamed into mod:mvpa2.

  • Fixes

    • compatible with the new Shogun 1.x series
    • compatible with the new h5py 2.x series
    • mvpa-prep-fmri -- various compatibility fixes and smoke testing
    • deepcopying :class:SummaryStatistics during add
  • Enhancements

    • tutorial uses :mod:mvpa2.tutorial_suite now
    • better suppression of R warnings when needed
    • internal attributes of many classes were exposed as properties
    • more unification of __repr__ for many classes
  • 0.6.0~rc4 (Wed, Jun 14 2011)

  • Fixes

    • Finished transition to :mod:nibabel conventions in plot_lightbox
    • Addressed :mod:matplotlib.hist API change
    • Various adjustments in the tests batteries (:mod:nibabel 1.1.0 compatibility, etc)
  • New functionality

    • Explicit new argument flatten to from_wizard -- default behavior changed if mapper was provided as well
  • Enhancements

    • Elaborated __str__ and __repr__ for some Classifiers and Measures
  • 0.6.0~rc3 (Thu, Apr 12 2011)

  • Fixes

    • Bugfixes regarding the interaction of FlattenMapper and BoxcarMapper that affected event-related analyses.
    • Splitter now handles attribute value None for splitting properly.
    • GNBSearchlight handling of
      roi_ids.
    • More robust detection of mod:scikits.learn and :mod:nipy externals.
  • New functionality

    • Added a Repeater node to yield a dataset multiple times and
      Sifter node to exclude some datasets. Consequently, the "nosplitting" mode of Splitter got removed at the same time.
    • :file:tools/niils -- little tool to list details (dimensionality, scaling, etc) of the files in nibabel-supported formats.
  • Enhancements

    • Numerous documentation fixes.
    • Various improvements and increased flexibility of null distribution estimation of Measures.
    • All attribute are now reported in sorted order when printing a dataset.
    • fmri_dataset now also stores the input image type.
    • Crossvalidation can now take a custom Splitter instance. Moreover, the default splitter of CrossValidation is more robust in terms of number and type of created splits for common usage patterns (i.e. together with partitioners).
    • CrossValidation takes any custom Node as errorfx argument.
    • ConfusionMatrix can now be used as an errorfx in Crossvalidation.
    • LOE(ACC): Linear Order Effect in ACC was added to
      ConfusionMatrix to detect trends in performances across splits.
    • A Node s postproc is now accessible as a property.
    • RepeatedMeasure has a new 'concat_as' argument that allows results to be concatenated along the feature axis. The default behavior, stacking as multiple samples, is unchanged.
    • Searchlight now has the ability to mark the center/seed of an ROI in with a feature attribute in the generated datasets.
    • debug takes args parameter for delayed string comprehensions. It should reduce run-time impact of debug() calls in regular, non -O mode of Python operation.
    • String summaries and representations (provided by __str__ and __repr__) were made more exhaustive and more coherent. Additional properties to access initial constructor arguments were added to variety of classes.
  • Internal changes

    • New debug target STDOUT to allow attaching metrics (e.g. traceback, timestamps) to regular output printed to stdout

    • New set of decorators to help with unittests

    • @nodebug to disable specific debug targets for the duration of the test.

    • @reseed_rng to guarantee consistent random data given initial seeding.

    • @with_tempfile to provide a tempfile name which would get removed upon completion (test success or failure)

    • Dropping daily testing of maint/0.5 branch -- RIP.

    • Collection s were provided with adequate (deep|)copy. And Dataset was refactored to use Collection s copy method.

    • update-* Makefile rules automatically should fast-forward corresponding website-updates branch

    • MVPA_TESTS_VERBOSITY controls also :mod:numpy warnings now.

    • Dataset.__array__ provides original array instead of copy (unless dtype is provided)

Also adapts changes from 0.4.6 and 0.4.7 (see corresponding changelogs).

  • 0.6.0~rc2 (Thu, Mar 3 2011)

  • Various fixes in the mvpa.atlas module.

  • 0.6.0~rc1 (Thu, Feb 24 2011)

  • Many, many, many

  • For an overview of the most drastic changes :ref:see constantly evolving release notes for 0.6 <chap_release_notes_0.6>

  • 0.5.0 (sometime in March 2010)

This is a special release, because it has never seen the general public. A summary of fundamental changes introduced in this development version can be seen in the :ref:release notes <chap_release_notes_0.5>.

Most notably, this version was to first to come with a comprehensive two-day workshop/tutorial.

  • 0.4.7 (Tue, Mar 07 2011) (Total: 12 commits)

A bugfix release

  • Fixed

    • Addressed the issue with input NIfTI files having scl_ fields set: it could result in incorrect analyses and map2nifti-produced NIfTI files. Now input files account for scaling/offset if scl_ fields direct to do so. Moreover upon map2nifti, those fields get reset.
    • :file:doc/examples/searchlight_minimal.py - best error is the minimal one
  • Enhancements

    • :class:~mvpa.clfs.gnb.GNB can now tolerate training datasets with a single label
    • :class:~mvpa.clfs.meta.TreeClassifier can have trailing nodes with no classifier assigned
  • 0.4.6 (Tue, Feb 01 2011) (Total: 20 commits)

A bugfix release

  • Fixed (few BF commits):

    • Compatibility with numpy 1.5.1 (histogram) and scipy 0.8.0 (workaround for a regression in legendre)
    • Compatibility with libsvm 3.0
    • :class:~mvpa.clfs.plr.PLR robustification
  • Enhancements

    • Enforce suppression of numpy warnings while running unittests. Also setting verbosity >= 3 enables all warnings (Python, NumPy, and PyMVPA)
    • :file:doc/examples/nested_cv.py example (adopted from 0.5)
    • Introduced base class :class:~mvpa.clfs.base.LearnerError for classifiers' exceptions (adopted from 0.5)
    • Adjusted example data to live upto nibabel's warranty of NIfTI standard-compliance
    • More robust operation of MC iterations -- skip iterations where classifier experienced difficulties and raise an exception (e.g. due to degenerate data)

Logo Random Forests 5.1

by zenog - September 21, 2011, 14:14:17 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 3821 views, 724 downloads, 1 subscription

About: The original Random Forests implementation by Breiman and Cutler.

Changes:

Initial Announcement on mloss.org.


Logo C5.0 2.07

by zenog - September 2, 2011, 14:49:04 CET [ Project Homepage BibTeX Download ] 3512 views, 949 downloads, 1 subscription

About: C5.0 is the successor of the C4.5 decision tree algorithm/tool. In particular, it is faster and more memory-efficient.

Changes:

Initial Announcement on mloss.org.


About: Matlab implementation of variational gaussian approximate inference for Bayesian Generalized Linear Models.

Changes:

Code restructure and bug fix.


Logo Pyriel 1.5

by tfawcett - October 27, 2010, 09:12:53 CET [ BibTeX BibTeX for corresponding Paper Download ] 14272 views, 3273 downloads, 1 subscription

About: Pyriel is a Python system for learning classification rules from data. Unlike other rule learning systems, it is designed to learn rule lists that maximize the area under the ROC curve (AUC) instead of accuracy. Pyriel is mostly an experimental research tool, but it's robust and fast enough to be used for lightweight industrial data mining.

Changes:

1.5 Changed CF (confidence factor) to do LaPlace smoothing of estimates. New flag "--score-for-class C" causes scores to be computed relative to a given (positive) class. For two-class problems. Fixed bug in example sampling code (--sample n) Fixed bug keeping old-style example formats (terminated by dot) from working. More code restructuring.


Logo KeplerWeka 20101008

by fracpete - October 9, 2010, 05:27:13 CET [ Project Homepage BibTeX Download ] 11371 views, 3651 downloads, 1 subscription

About: KeplerWeka represents the integration of all the functionality of the WEKA Machine Learning Workbench into the open-source scientific workflow Kepler. Among them are classification, [...]

Changes:
  • Now compatible with Kepler 2.0
  • New version of WEKA included (patched 3.7.2 release), WEKA's new package manager works in conjunction with Kepler
  • Renamed actor Count to ConditionalTee, introduced new Count actor
  • Removed actors OutputLogger, MultiSync, TwinSync

Logo OpenViBE 0.8.0

by k3rl0u4rn - October 1, 2010, 16:15:08 CET [ Project Homepage BibTeX Download ] 13214 views, 3656 downloads, 1 subscription

Rating Whole StarWhole StarWhole StarEmpty StarEmpty Star
(based on 1 vote)

About: OpenViBE is an opensource platform that enables to design, test and use Brain-Computer Interfaces (BCI). Broadly speaking, OpenViBE can be used in many real-time Neuroscience applications [...]

Changes:

New release 0.8.0.


Logo PSVM 1.31

by mhex - July 29, 2010, 10:02:12 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 5553 views, 1450 downloads, 1 subscription

Rating Whole StarWhole StarWhole StarWhole Star1/2 Star
(based on 2 votes)

About: PSVM - Support vector classification, regression and feature extraction for non-square dyadic data, non-Mercer kernels.

Changes:

Initial Announcement on mloss.org.


Logo LSTM for biological sequence analysis 1.0

by mhex - July 28, 2010, 16:32:29 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 7417 views, 1791 downloads, 1 subscription

Rating Whole StarWhole StarWhole StarWhole StarWhole Star
(based on 1 vote)

About: Implementation of LSTM for biological sequence analysis (classification, regression, motif discovery, remote homology detection). Additionally a LSTM as logistic regression with spectrum kernel is included.

Changes:

Spectrum LSTM package included


Logo LIBOCAS 0.93

by vf - June 20, 2010, 12:22:05 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 11500 views, 1771 downloads, 2 subscriptions

About: The library implements Optimized Cutting Plane Algorithm (OCAS) for efficient training of linear SVM classifiers from large-scale data.

Changes:

Implemented COFFIN framework which allows efficient training of invariant image classifiers via virtual examples.


Logo Stabilized Infinite Kernel Learning 1.0.0

by ghiasi - April 10, 2010, 08:45:03 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 5231 views, 982 downloads, 1 subscription

About: This software is designed for learning translation invariant kernels for classification with support vector machines.

Changes:

Initial Announcement on mloss.org.


Logo LIBSVM 2.9

by cjlin - February 27, 2010, 01:09:23 CET [ Project Homepage BibTeX Download ] 12370 views, 2556 downloads, 1 subscription

Rating Whole StarWhole StarWhole StarWhole Star1/2 Star
(based on 7 votes)

About: LIBSVM is an integrated software for support vector classification, (C-SVC, nu-SVC ), regression (epsilon-SVR, nu-SVR) and distribution estimation (one-class SVM). It supports multi-class [...]

Changes:

Initial Announcement on mloss.org.


Logo JINSECT 1.0

by ggianna - February 25, 2010, 19:03:06 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 5480 views, 1896 downloads, 1 subscription

About: The JINSECT toolkit is a Java-based toolkit and library that supports and demonstrates the use of n-gram graphs within Natural Language Processing applications, ranging from summarization and summary evaluation to text classi?cation and indexing.

Changes:
  • Added java doc to downloadable files.
  • Created SourceForge wiki page at http://sourceforge.net/apps/mediawiki/jinsect/index.php?title=Main_Page.

Logo sofia ml 0.1

by dsculley - December 29, 2009, 23:30:58 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 6289 views, 1112 downloads, 0 comments, 1 subscription

About: A fast implementation of several stochastic gradient descent learners for classification, ranking, and ROC area optimization, suitable for large, sparse data sets. Includes Pegasos SVM, SGD-SVM, Passive-Aggressive Perceptron, Perceptron with Margins, Logistic Regression, and ROMMA. Commandline utility and API libraries are provided.

Changes:

Initial Announcement on mloss.org.


Logo JMLR Shark 2.3.0

by igel - October 24, 2009, 22:12:48 CET [ Project Homepage BibTeX Download ] 30041 views, 5941 downloads, 1 subscription

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 3 votes)

About: SHARK is a modular C++ library for the design and optimization of adaptive systems. It provides various machine learning and computational intelligence techniques.

Changes:
  • new build system
  • minor bug fixes

Logo MALLET 2.0-rc4

by jacktanner - August 24, 2009, 23:10:14 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 13027 views, 2124 downloads, 1 subscription

About: MALLET is a Java-based package for statistical natural language processing, document classification, clustering, topic modeling, information extraction, and other machine learning applications to [...]

Changes:

MALLET 2.0 RC4 Release Notes July 16, 2009

Major updates:

An implementation of generalized expectation criteria training of MaxEnt classifiers and methods for obtaining constraints (c.f. Gregory Druck, Gideon Mann, Andrew McCallum "Learning from Labeled Features using Generalized Expectation Criteria.")

PagedInstanceList has been substantially rewritten by Mike Bond.

Bug fixes to topic model hyperparameter optimization and topic inference.


Logo BMRM 2.1

by chteo - May 8, 2009, 08:08:20 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 7130 views, 1462 downloads, 1 subscription

About: BMRM is an open source, modular and scalable convex solver for many machine learning problems cast in the form of regularized risk minimization problem.

Changes:

Initial Announcement on mloss.org.


Logo Graph Learning Package 0.1

by hiroto - May 4, 2009, 17:07:15 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 8417 views, 1609 downloads, 0 subscriptions

About: This software is aimed at performing supervised/unsupervised learning on graph data, where each graph is represented as binary indicators of subgraph features.

Changes:

Initial Announcement on mloss.org.


Logo JMLR Nieme 1.0

by francis - April 2, 2009, 10:57:38 CET [ Project Homepage BibTeX Download ] 20437 views, 2722 downloads, 1 subscription

Rating Whole StarWhole StarWhole Star1/2 StarEmpty Star
(based on 3 votes)

About: Nieme is a C++ machine learning library for large-scale classification, regression and ranking. It provides a simple interface available in C++, Python and Java and a user interface for visualization.

Changes:

Released Nieme 1.0


Showing Items 41-60 of 77 on page 3 of 4: Previous 1 2 3 4 Next