Projects that are tagged with classification.
Showing Items 21-40 of 68 on page 2 of 4: Previous 1 2 3 4 Next

Logo Orange 2.6

by janez - February 14, 2013, 18:15:08 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 11824 views, 2302 downloads, 1 subscription

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 1 vote)

About: Orange is a component-based machine learning and data mining software. It includes a friendly yet powerful and flexible graphical user interface for visual programming. For more advanced use(r)s, [...]

Changes:

The core of the system (except the GUI) no longer includes any GPL code and can be licensed under the terms of BSD upon request. The graphical part remains under GPL.

Changed the BibTeX reference to the paper recently published in JMLR MLOSS.


Logo UniverSVM 1.22

by fabee - October 16, 2012, 11:24:12 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 17070 views, 2590 downloads, 0 subscriptions

About: The UniverSVM is a SVM implementation written in C/C++. Its functionality comprises large scale transduction via CCCP optimization, sparse solutions via CCCP optimization and data-dependent [...]

Changes:

Minor changes: fix bug on set_alphas_b0 function (thanks to Ferdinand Kaiser - ferdinand.kaiser@tut.fi)


Logo Linear SVM with general regularization 1.0

by rflamary - October 5, 2012, 15:34:21 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 2445 views, 701 downloads, 1 subscription

About: This package is an implementation of a linear svm solver with a wide class of regularizations on the svm weight vector (l1, l2, mixed norm l1-lq, adaptive lasso). We provide solvers for the classical single task svm problem and for multi-task with joint feature selection or similarity promoting term.

Changes:

Initial Announcement on mloss.org.


Logo JMLR Mulan 1.4.0

by lefman - August 1, 2012, 09:49:21 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 14171 views, 5887 downloads, 1 subscription

About: Mulan is an open-source Java library for learning from multi-label datasets. Multi-label datasets consist of training examples of a target function that has multiple binary target variables. This means that each item of a multi-label dataset can be a member of multiple categories or annotated by many labels (classes). This is actually the nature of many real world problems such as semantic annotation of images and video, web page categorization, direct marketing, functional genomics and music categorization into genres and emotions.

Changes:

Learners

  • BinaryRelevance.java: improved data handling that avoids copying the entire input space, leading to important speedups in case of large datasets and very large number of labels.
  • RAkEL.java: updated technical information, added a check for the case where the number of labels is less or equal than the size of the subset.
  • MultiLabelKNN.java: now checks whether the number of instances is less than the number of requested nearest neighbors.
  • Addition of AdaBoostMH.java, an explicit implementation of AdaBoost.MH as combination of AdaBoostM1 and IncludeLabelsClassifier.
  • Addition of MLPTO.java, the Multi Label Probabilistic Threshold Optimizer (MLTPTO) thresholding technique.
  • Addition of ApproximateExampleBasedFMeasureOptimizer.java, an approximate method for the maximization of example-based F-measure.

Measures/Evaluation

  • Addition of Specificity measure (example-based, micro/macro label-based)
  • Addition of Mean Average Interpolated Precision (MAiP), Geometric Mean Average Precision (GMAP), Geometric Mean Average Interpolated Precision (GMAiP).
  • New methods for stratified multi-label evaluation.
  • Added support for outputting per label results for all measures that implement the MacroAverageMeasure interface.
  • Simplifying the "strictness" issue of information retrieval measures, by adopting specific assumptions (outlined in the new class InformationRetrievalMeasures.java) to handle special cases, instead of the less clear and useful solution of outputting NaN and the less realistic solution or ignoring special cases.

Bug fixes

  • Bug fix in LabelsBuilder.java.
  • Bug fix in Ranker.java.
  • Bug-fix in ThresholdPrediction.java.
  • Fix for bug occurring when loading the XSD for mulan data outside the command-line environment (e.g. web applications).
  • Javadoc comment updates.

API changes

  • Upgrade to Java 1.6
  • Upgrade to JUnit 4.10
  • Upgrade to Weka 3.7.6.

Miscellaneous

  • Meaningful messages are now shown when a DataLoadException is thrown.
  • PT6(PT6Transformation.java): renamed to IncludeLabelsTransformation.java.
  • MultiLabelInstances now support serialization, as needed by the improved binary relevance transformation.
  • BinaryRelevanceAttributeEvaluator.java: updated according to latest BR improvements.

Logo MLWizard 5.2

by remat - July 26, 2012, 15:04:14 CET [ Project Homepage BibTeX Download ] 2842 views, 707 downloads, 1 subscription

About: MLwizard recommends and optimizes classification algorithms based on meta-learning and is a software wizard fully integrated into RapidMiner but can be used as library as well.

Changes:

Faster parameter optimization using genetic algorithm with predefined start population.


Logo MLFlex 02-21-2012-00-12

by srp33 - April 3, 2012, 16:44:43 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 1986 views, 397 downloads, 1 subscription

About: Motivated by a need to classify high-dimensional, heterogeneous data from the bioinformatics domain, we developed ML-Flex, a machine-learning toolbox that enables users to perform two-class and multi-class classification analyses in a systematic yet flexible manner. ML-Flex was written in Java but is capable of interfacing with third-party packages written in other programming languages. It can handle multiple input-data formats and supports a variety of customizations. MLFlex provides implementations of various validation strategies, which can be executed in parallel across multiple computing cores, processors, and nodes. Additionally, ML-Flex supports aggregating evidence across multiple algorithms and data sets via ensemble learning. (See http://jmlr.csail.mit.edu/papers/volume13/piccolo12a/piccolo12a.pdf.)

Changes:

Initial Announcement on mloss.org.


Logo Sparse MultiTask Learning Toolbox 1.2

by rflamary - March 18, 2012, 11:31:00 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 2993 views, 724 downloads, 1 subscription

About: This package is a set of Matlab scripts that implements the algorithms described in the submitted paper: "Lp-Lq Sparse Linear and Sparse Multiple Kernel MultiTask Learning".

Changes:

Initial Announcement on mloss.org.


Logo MLPY Machine Learning Py 3.5.0

by albanese - March 15, 2012, 09:52:41 CET [ Project Homepage BibTeX Download ] 50400 views, 9523 downloads, 2 subscriptions

Rating Whole StarWhole StarWhole Star1/2 StarEmpty Star
(based on 3 votes)

About: mlpy is a Python module for Machine Learning built on top of NumPy/SciPy and of GSL.

Changes:

New features:

  • LibSvm(): pred_probability() now returns probability estimates; pred_values() added
  • LibLinear(): pred_values() and pred_probability() added
  • dtw_std: squared Euclidean option added
  • LCS for series composed by real values (lcs_real()) added
  • Documentation

Fix:

  • wavelet submodule: cwt(): it returned only real values in morlet and poul
  • IRelief(): remove np. in learn()
  • fix rfe_kfda and rfe_w2 when p=1

Logo Large margin filtering 0.9

by rflamary - February 18, 2012, 15:50:43 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 2592 views, 557 downloads, 1 subscription

About: Matlab SVM toolbox for learning large margin filters in signal or images.

Changes:

Initial Announcement on mloss.org.


Logo NaN toolbox 2.5.2

by schloegl - February 10, 2012, 11:45:52 CET [ Project Homepage BibTeX Download ] 29800 views, 6043 downloads, 1 subscription

About: NaN-toolbox is a statistics and machine learning toolbox for handling data with and without missing values.

Changes:

Changes in v.2.5.2 - faster version of quantile if multiple quantiles are requested - removes the dependency on ZLIB and thus - fixes "pkg install nan" for Octave on Windows - a number of minor improvements

For details see the CHANGELOG at http://pub.ist.ac.at/~schloegl/matlab/NaN/CHANGELOG


Logo BCILAB 1.0-beta

by chkothe - January 6, 2012, 23:47:55 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 3335 views, 666 downloads, 1 subscription

About: MATLAB toolbox for advanced Brain-Computer Interface (BCI) research.

Changes:

Initial Announcement on mloss.org.


Logo Kernel Machine Library 0.2

by pawelm - December 27, 2011, 17:14:01 CET [ Project Homepage BibTeX BibTeX for corresponding Paper ] 3439 views, 131 downloads, 1 subscription

About: The Kernel-Machine Library is a free (released under the LGPL) C++ library to promote the use of and progress of kernel machines.

Changes:

Updated mloss entry (minor fixes).


Logo PyMVPA Multivariate Pattern Analysis in Python 2.0.0

by yarikoptic - December 22, 2011, 01:36:32 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 29657 views, 5439 downloads, 1 subscription

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 2 votes)

About: Python module to ease pattern classification analyses of large datasets. It provides high-level abstraction of typical processing steps (e.g. data preparation, classification, feature selection, [...]

Changes:
  • 2.0.0 (Mon, Dec 19 2011)

This release aggregates all the changes occurred between official releases in 0.4 series and various snapshot releases (in 0.5 and 0.6 series). To get better overview of high level changes see :ref:release notes for 0.5 <chap_release_notes_0.5> and :ref:0.6 <chap_release_notes_0.6> as well as summaries of release candidates below

  • Fixes (23 BF commits)

    • significance level in the right tail was fixed to include the value tested -- otherwise resulted in optimistic bias (or absurdly high significance in improbable case if all estimates having the same value)
    • compatible with the upcoming IPython 0.12 and renamed sklearn (Fixes #57)
    • do not double-train slave classifiers while assessing sensitivities (Fixes #53)
  • Enhancements (30 ENH + 3 NF commits)

    • resolving voting ties in kNN based on mean distance, and randomly in SMLR
    • :class:kNN's ca.estimates now contains dictionaries with votes for each class
    • consistent zscoring in :class:Hyperalignment
  • 2.0.0~rc5 (Wed, Oct 19 2011)

  • Major: to allow easy co-existence of stable PyMVPA 0.4.x, 0.6 development mvpa module was renamed into mod:mvpa2.

  • Fixes

    • compatible with the new Shogun 1.x series
    • compatible with the new h5py 2.x series
    • mvpa-prep-fmri -- various compatibility fixes and smoke testing
    • deepcopying :class:SummaryStatistics during add
  • Enhancements

    • tutorial uses :mod:mvpa2.tutorial_suite now
    • better suppression of R warnings when needed
    • internal attributes of many classes were exposed as properties
    • more unification of __repr__ for many classes
  • 0.6.0~rc4 (Wed, Jun 14 2011)

  • Fixes

    • Finished transition to :mod:nibabel conventions in plot_lightbox
    • Addressed :mod:matplotlib.hist API change
    • Various adjustments in the tests batteries (:mod:nibabel 1.1.0 compatibility, etc)
  • New functionality

    • Explicit new argument flatten to from_wizard -- default behavior changed if mapper was provided as well
  • Enhancements

    • Elaborated __str__ and __repr__ for some Classifiers and Measures
  • 0.6.0~rc3 (Thu, Apr 12 2011)

  • Fixes

    • Bugfixes regarding the interaction of FlattenMapper and BoxcarMapper that affected event-related analyses.
    • Splitter now handles attribute value None for splitting properly.
    • GNBSearchlight handling of
      roi_ids.
    • More robust detection of mod:scikits.learn and :mod:nipy externals.
  • New functionality

    • Added a Repeater node to yield a dataset multiple times and
      Sifter node to exclude some datasets. Consequently, the "nosplitting" mode of Splitter got removed at the same time.
    • :file:tools/niils -- little tool to list details (dimensionality, scaling, etc) of the files in nibabel-supported formats.
  • Enhancements

    • Numerous documentation fixes.
    • Various improvements and increased flexibility of null distribution estimation of Measures.
    • All attribute are now reported in sorted order when printing a dataset.
    • fmri_dataset now also stores the input image type.
    • Crossvalidation can now take a custom Splitter instance. Moreover, the default splitter of CrossValidation is more robust in terms of number and type of created splits for common usage patterns (i.e. together with partitioners).
    • CrossValidation takes any custom Node as errorfx argument.
    • ConfusionMatrix can now be used as an errorfx in Crossvalidation.
    • LOE(ACC): Linear Order Effect in ACC was added to
      ConfusionMatrix to detect trends in performances across splits.
    • A Node s postproc is now accessible as a property.
    • RepeatedMeasure has a new 'concat_as' argument that allows results to be concatenated along the feature axis. The default behavior, stacking as multiple samples, is unchanged.
    • Searchlight now has the ability to mark the center/seed of an ROI in with a feature attribute in the generated datasets.
    • debug takes args parameter for delayed string comprehensions. It should reduce run-time impact of debug() calls in regular, non -O mode of Python operation.
    • String summaries and representations (provided by __str__ and __repr__) were made more exhaustive and more coherent. Additional properties to access initial constructor arguments were added to variety of classes.
  • Internal changes

    • New debug target STDOUT to allow attaching metrics (e.g. traceback, timestamps) to regular output printed to stdout

    • New set of decorators to help with unittests

    • @nodebug to disable specific debug targets for the duration of the test.

    • @reseed_rng to guarantee consistent random data given initial seeding.

    • @with_tempfile to provide a tempfile name which would get removed upon completion (test success or failure)

    • Dropping daily testing of maint/0.5 branch -- RIP.

    • Collection s were provided with adequate (deep|)copy. And Dataset was refactored to use Collection s copy method.

    • update-* Makefile rules automatically should fast-forward corresponding website-updates branch

    • MVPA_TESTS_VERBOSITY controls also :mod:numpy warnings now.

    • Dataset.__array__ provides original array instead of copy (unless dtype is provided)

Also adapts changes from 0.4.6 and 0.4.7 (see corresponding changelogs).

  • 0.6.0~rc2 (Thu, Mar 3 2011)

  • Various fixes in the mvpa.atlas module.

  • 0.6.0~rc1 (Thu, Feb 24 2011)

  • Many, many, many

  • For an overview of the most drastic changes :ref:see constantly evolving release notes for 0.6 <chap_release_notes_0.6>

  • 0.5.0 (sometime in March 2010)

This is a special release, because it has never seen the general public. A summary of fundamental changes introduced in this development version can be seen in the :ref:release notes <chap_release_notes_0.5>.

Most notably, this version was to first to come with a comprehensive two-day workshop/tutorial.

  • 0.4.7 (Tue, Mar 07 2011) (Total: 12 commits)

A bugfix release

  • Fixed

    • Addressed the issue with input NIfTI files having scl_ fields set: it could result in incorrect analyses and map2nifti-produced NIfTI files. Now input files account for scaling/offset if scl_ fields direct to do so. Moreover upon map2nifti, those fields get reset.
    • :file:doc/examples/searchlight_minimal.py - best error is the minimal one
  • Enhancements

    • :class:~mvpa.clfs.gnb.GNB can now tolerate training datasets with a single label
    • :class:~mvpa.clfs.meta.TreeClassifier can have trailing nodes with no classifier assigned
  • 0.4.6 (Tue, Feb 01 2011) (Total: 20 commits)

A bugfix release

  • Fixed (few BF commits):

    • Compatibility with numpy 1.5.1 (histogram) and scipy 0.8.0 (workaround for a regression in legendre)
    • Compatibility with libsvm 3.0
    • :class:~mvpa.clfs.plr.PLR robustification
  • Enhancements

    • Enforce suppression of numpy warnings while running unittests. Also setting verbosity >= 3 enables all warnings (Python, NumPy, and PyMVPA)
    • :file:doc/examples/nested_cv.py example (adopted from 0.5)
    • Introduced base class :class:~mvpa.clfs.base.LearnerError for classifiers' exceptions (adopted from 0.5)
    • Adjusted example data to live upto nibabel's warranty of NIfTI standard-compliance
    • More robust operation of MC iterations -- skip iterations where classifier experienced difficulties and raise an exception (e.g. due to degenerate data)

Logo Random Forests 5.1

by zenog - September 21, 2011, 14:14:17 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 2603 views, 465 downloads, 1 subscription

About: The original Random Forests implementation by Breiman and Cutler.

Changes:

Initial Announcement on mloss.org.


Logo C5.0 2.07

by zenog - September 2, 2011, 14:49:04 CET [ Project Homepage BibTeX Download ] 2559 views, 643 downloads, 1 subscription

About: C5.0 is the successor of the C4.5 decision tree algorithm/tool. In particular, it is faster and more memory-efficient.

Changes:

Initial Announcement on mloss.org.


About: Matlab implementation of variational gaussian approximate inference for Bayesian Generalized Linear Models.

Changes:

Code restructure and bug fix.


Logo Pyriel 1.5

by tfawcett - October 27, 2010, 09:12:53 CET [ BibTeX BibTeX for corresponding Paper Download ] 11031 views, 2374 downloads, 1 subscription

About: Pyriel is a Python system for learning classification rules from data. Unlike other rule learning systems, it is designed to learn rule lists that maximize the area under the ROC curve (AUC) instead of accuracy. Pyriel is mostly an experimental research tool, but it's robust and fast enough to be used for lightweight industrial data mining.

Changes:

1.5 Changed CF (confidence factor) to do LaPlace smoothing of estimates. New flag "--score-for-class C" causes scores to be computed relative to a given (positive) class. For two-class problems. Fixed bug in example sampling code (--sample n) Fixed bug keeping old-style example formats (terminated by dot) from working. More code restructuring.


Logo KeplerWeka 20101008

by fracpete - October 9, 2010, 05:27:13 CET [ Project Homepage BibTeX Download ] 9191 views, 3134 downloads, 1 subscription

About: KeplerWeka represents the integration of all the functionality of the WEKA Machine Learning Workbench into the open-source scientific workflow Kepler. Among them are classification, [...]

Changes:
  • Now compatible with Kepler 2.0
  • New version of WEKA included (patched 3.7.2 release), WEKA's new package manager works in conjunction with Kepler
  • Renamed actor Count to ConditionalTee, introduced new Count actor
  • Removed actors OutputLogger, MultiSync, TwinSync

Logo OpenViBE 0.8.0

by k3rl0u4rn - October 1, 2010, 16:15:08 CET [ Project Homepage BibTeX Download ] 10990 views, 3067 downloads, 1 subscription

Rating Whole StarWhole StarWhole StarEmpty StarEmpty Star
(based on 1 vote)

About: OpenViBE is an opensource platform that enables to design, test and use Brain-Computer Interfaces (BCI). Broadly speaking, OpenViBE can be used in many real-time Neuroscience applications [...]

Changes:

New release 0.8.0.


Logo PSVM 1.31

by mhex - July 29, 2010, 10:02:12 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 4244 views, 1089 downloads, 1 subscription

Rating Whole StarWhole StarWhole StarWhole Star1/2 Star
(based on 2 votes)

About: PSVM - Support vector classification, regression and feature extraction for non-square dyadic data, non-Mercer kernels.

Changes:

Initial Announcement on mloss.org.


Showing Items 21-40 of 68 on page 2 of 4: Previous 1 2 3 4 Next