Projects that are tagged with classification.
Showing Items 1-20 of 83 on page 1 of 5: 1 2 3 4 5 Next

Logo JMLR dlib ml 19.7

by davis685 - September 17, 2017, 15:10:23 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 198431 views, 31031 downloads, 5 subscriptions

About: This project is a C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real world problems.

Changes:

This release upgrades dlib's CNN+MMOD object detector to support creating multi-class detectors. It also includes significant speed improvements, allowing the detector to run at 98fps when executed on a NVIDIA 1080ti GPU. This release also adds a new 5 point face landmarking model that is over 10x smaller than the 68 point model, runs faster, and works with both HOG and CNN generated face detections. It is now the recommended landmarking model to use for face alignment.


Logo JMLR Jstacs 2.3

by keili - September 13, 2017, 14:25:38 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 31195 views, 7156 downloads, 4 subscriptions

About: A Java framework for statistical analysis and classification of biological sequences

Changes:

New classes and packages:

  • Jstacs 2.3 is the first release to be accompanied by JstacsFX, a library for building JavaFX-based graphical user interfaces based on JstacsTools
  • new interface MultiThreadedFunction
  • new class LargeSequenceReader for reading large sequence files in chunks
  • new interface QuickScanningSequenceScore
  • new class RegExpValidator for checking String inputs against a regular expression
  • new class IUPACDNAAlphabet

New features and improvements:

  • Alignments may now handle different costs for insert and delete gaps
  • ListResults may now be constructed from Collections of ResultSets
  • Several minor improvements and bugfixes in many classes
  • Improvements of documentation of several classes

Logo KeLP 2.2.1

by kelpadmin - August 7, 2017, 17:20:39 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 18619 views, 3932 downloads, 3 subscriptions

About: Kernel-based Learning Platform (KeLP) is Java framework that supports the implementation of kernel-based learning algorithms, as well as an agile definition of kernel functions over generic data representation, e.g. vectorial data or discrete structures. The framework has been designed to decouple kernel functions and learning algorithms, through the definition of specific interfaces. Once a new kernel function has been implemented, it can be automatically adopted in all the available kernel-machine algorithms. KeLP includes different Online and Batch Learning algorithms for Classification, Regression and Clustering, as well as several Kernel functions, ranging from vector-based to structural kernels. It allows to build complex kernel machine based systems, leveraging on JSON/XML interfaces to instantiate prediction models without writing a single line of code.

Changes:

In addition to minor bug fixes, this release includes:

  • A new cache (FixSizeKernelCache) that can store a larger number of computations.

  • Evaluators for measuring the quality of Clustering algorithms.

Furthermore we also released the new module kelp-input-generator, that contains the facilities to parse text snippets and generate tree representations for KeLP!

Check out this new version from our repositories. API Javadoc is already available. Your suggestions will be very precious for us, so download and try KeLP 2.2.1!


Logo KeBABS 1.5.4

by UBod - July 28, 2017, 09:55:04 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 21593 views, 3876 downloads, 3 subscriptions

About: Kernel-Based Analysis of Biological Sequences

Changes:
  • importing apcluster package for avoiding method clashes
  • improved and completed change history in inst/NEWS and package vignette

About: pycobra is a python library for ensemble learning, which serves as a toolkit for regression, classification, and visualisation. It is scikit-learn compatible and fits into the existing scikit-learn ecosystem.

Changes:

Project is now fully scikit-learn compatible, implements 2 new predictor aggregation algorithms, more Jupyter notebooks and examples, and continuous integration for tests.


Logo MLweb 1.0

by lauerfab - July 7, 2017, 14:43:52 CET [ Project Homepage BibTeX Download ] 11251 views, 2690 downloads, 3 subscriptions

About: MLweb is an open source project that aims at bringing machine learning capabilities into web pages and web applications, while maintaining all computations on the client side. It includes (i) a javascript library to enable scientific computing within web pages, (ii) a javascript library implementing machine learning algorithms for classification, regression, clustering and dimensionality reduction, (iii) a web application providing a matlab-like development environment.

Changes:
  • Faster LeastSquares and RidgeRegression with conjugate gradient method
  • LeastSquares now works also with sparse X
  • Faster thin SVD for tall matrices
  • Fix load data file in LALOLab
  • Add examples in LALOLab

Logo NaN toolbox 3.1.2

by schloegl - January 22, 2017, 12:24:59 CET [ Project Homepage BibTeX Download ] 63789 views, 12927 downloads, 3 subscriptions

About: NaN-toolbox is a statistics and machine learning toolbox for handling data with and without missing values.

Changes:

Changes in v.3.1.2 - improve configuration and build system - support of more platforms (including Octave 4.2.0) improved

Changes in v.3.0.3 - improve compatibility for Octave on Windows

Changes in v.3.0.1 - fix packaging for octave

Changes in v.2.8.5 - bug fix: trimmean - compiler support for gcc-5 and clang - fix typos

For details see the CHANGELOG at http://pub.ist.ac.at/~schloegl/matlab/NaN/CHANGELOG


Logo Java Statistical Analysis Tool 0.0.7

by EdwardRaff - January 15, 2017, 22:21:50 CET [ Project Homepage BibTeX Download ] 3611 views, 894 downloads, 2 subscriptions

About: General purpose Java Machine Learning library for classification, regression, and clustering.

Changes:

See github release tab for change info


Logo WEKA 3.9.1

by mhall - December 19, 2016, 04:44:20 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 75151 views, 15840 downloads, 5 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 6 votes)

About: The Weka workbench contains a collection of visualization tools and algorithms for data analysis and predictive modelling, together with graphical user interfaces for easy access to this [...]

Changes:

In core weka:

  • JAMA-based linear algebra routines replaced with MTJ. Faster operation with the option to use native libraries for even more speed
  • General efficiency improvements in core, filters and some classifiers
  • GaussianProcesses now handles instance weights
  • New Knowledge Flow implementation. Engine completely rewritten from scratch with a simplified API
  • New Workbench GUI
  • GUI package manager now has a search facility
  • FixedDictionaryStringToWordVector filter allows the use of an external dictionary for vectorization. DictionarySaver converter can be used to create a dictionary file

In packages:

  • Packages that were using JAMA are now using MTJ
  • New netlibNativeOSX, netlibNativeWindows and netlibNativeLinux packages providing native reference implementations (and system-optimized implementation in the case of OSX) of BLAS, LAPACK and ARPACK linear algebra
  • New elasticNet package, courtesy of Nikhil Kinshore
  • New niftiLoader package for loading a directory with MIR data in NIfTI format into Weka
  • New percentageErrorMetrics package - provides plugin evaluation metrics for root mean square percentage error and mean absolute percentage error
  • New iterativeAbsoluteErrorRegression package - provides a meta learner that fits a regression model to minimize absolute error
  • New largeScaleKernelLearning package - contains filters for large-scale kernel-based learning
  • discriminantAnalysis package now contains an implementation for LDA and QDA
  • New Knowledge Flow component implementations in various packages
  • newKnowledgeFlowStepExamples package - contains code examples for new Knowledge Flow API discussion in the Weka Manual
  • RPlugin updated to latest version of MLR
  • scatterPlot3D and associationRulesVisualizer packages updated with latest Java 3D libraries
  • Support for pluggable activation functions in the multiLayerPerceptrons package

Logo Tools for Regression and Classification 1.0.0

by matloff - October 29, 2016, 08:22:40 CET [ Project Homepage BibTeX Download ] 2132 views, 410 downloads, 3 subscriptions

About: Toolkit for parametric and nonparametric regression and classification.

Changes:

Initial Announcement on mloss.org.


Logo JMLR GPML Gaussian Processes for Machine Learning Toolbox 4.0

by hn - October 19, 2016, 10:15:05 CET [ Project Homepage BibTeX Download ] 47793 views, 10497 downloads, 5 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarWhole Star
(based on 2 votes)

About: The GPML toolbox is a flexible and generic Octave/Matlab implementation of inference and prediction with Gaussian process models. The toolbox offers exact inference, approximate inference for non-Gaussian likelihoods (Laplace's Method, Expectation Propagation, Variational Bayes) as well for large datasets (FITC, VFE, KISS-GP). A wide range of covariance, likelihood, mean and hyperprior functions allows to create very complex GP models.

Changes:

A major code restructuring effort did take place in the current release unifying certain inference functions and allowing more flexibility in covariance function composition. We also redesigned the whole derivative computation pipeline to strongly improve the overall runtime. We finally include grid-based covariance approximations natively.

More generic sparse approximation using Power EP

  • unified treatment of FITC approximation, variational approaches VFE and hybrids

  • inducing input optimisation for all (compositions of) covariance functions dropping the previous limitation to a few standard examples

  • infFITC is now covered by the more generic infGaussLik function

Approximate covariance object unifying sparse approximations, grid-based approximations and exact covariance computations

  • implementation in cov/apx, cov/apxGrid, cov/apxSparse

  • generic infGaussLik unifies infExact, infFITC and infGrid

  • generic infLaplace unifies infLaplace, infFITC_Laplace and infGrid_Laplace

Hiearchical structure of covariance functions

  • clear hierachical compositional implementation

  • no more code duplication as present in covSEiso and covSEard pairs

  • two mother covariance functions

    • covDot for dot-product-based covariances and

    • covMaha for Mahalanobis-distance-based covariances

  • a variety of modifiers: eye, iso, ard, proj, fact, vlen

  • more flexibility as more variants are available and possible

  • all covariance functions offer derivatives w.r.t. inputs

Faster derivative computations for mean and cov functions

  • switched from partial derivatives to directional derivatives

  • simpler and more concise interface of mean and cov functions

  • much faster marginal likelihood derivative computations

  • simpler and more compact code

New mean functions

  • new mean/meanWSPC (Weighted Sum of Projected Cosines or Random Kitchen Sink features) following a suggestion by William Herlands

  • new mean/meanWarp for constructing a new mean from an existing one by means of a warping function adapted from William Herlands

New optimizer

  • added a new minimize_minfunc, contributed by Truong X. Nghiem

New GLM link function

  • added the twice logistic link function util/glm_invlink_logistic2

Smaller fixes

  • two-fold speedup of util/elsympol used by covADD by Truong X. Nghiem

  • bugfix in util/logphi as reported by John Darby


Logo RLScore 0.7

by aatapa - September 20, 2016, 09:51:25 CET [ Project Homepage BibTeX Download ] 1848 views, 471 downloads, 3 subscriptions

About: RLScore - regularized least-squares machine learning algorithms package

Changes:

Initial Announcement on mloss.org.


Logo slim for matlab 0.2

by ustunb - August 23, 2016, 20:27:00 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 3021 views, 548 downloads, 3 subscriptions

About: learn optimized scoring systems using MATLAB and the CPLEX Optimization Studio

Changes:

Initial Announcement on mloss.org.


About: Nowadays this is very popular to use the deep architectures in machine learning. Deep Belief Networks (DBNs) are deep architectures that use a stack of Restricted Boltzmann Machines (RBM) to create a powerful generative model using training data. DBNs have many abilities such as feature extraction and classification that are used in many applications including image processing, speech processing, text categorization, etc. This paper introduces a new object oriented toolbox with the most important abilities needed for the implementation of DBNs. According to the results of the experiments conducted on the MNIST (image), ISOLET (speech), and the 20 Newsgroups (text) datasets, it was shown that the toolbox can learn automatically a good representation of the input from unlabeled data with better discrimination between different classes. Also on all the aforementioned datasets, the obtained classification errors are comparable to those of the state of the art classifiers. In addition, the toolbox supports different sampling methods (e.g. Gibbs, CD, PCD and our new FEPCD method), different sparsity methods (quadratic, rate distortion and our new normal method), different RBM types (generative and discriminative), GPU based, etc. The toolbox is a user-friendly open source software in MATLAB and Octave and is freely available on the website.

Changes:

New in toolbox

  • Using GPU in Backpropagation
  • Revision of some demo scripts
  • Function approximation with multiple outputs
  • Feature extraction with GRBM in first layer

cardinal


Logo JMLR GPstuff 4.7

by avehtari - June 9, 2016, 17:45:15 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 47809 views, 11846 downloads, 3 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarWhole Star
(based on 1 vote)

About: The GPstuff toolbox is a versatile collection of Gaussian process models and computational tools required for inference. The tools include, among others, various inference methods, sparse approximations and model assessment methods.

Changes:

2016-06-09 Version 4.7

Development and release branches available at https://github.com/gpstuff-dev/gpstuff

New features

  • Simple Bayesian Optimization demo

Improvements

  • Improved use of PSIS
  • More options added to gp_monotonic
  • Monotonicity now works for additive covariance functions with selected variables
  • Possibility to use gpcf_squared.m-covariance function with derivative observations/monotonicity
  • Default behaviour made more robust by changing default jitter from 1e-9 to 1e-6
  • LA-LOO uses the cavity method as the default (see Vehtari et al (2016). Bayesian leave-one-out cross-validation approximations for Gaussian latent variable models. JMLR, accpeted for publication)
  • Selected variables -option works now better with monotonicity

Bugfixes

  • small error in derivative observation computation fixed
  • several minor bug fixes

Logo AutoWEKA 2.0

by larsko - May 19, 2016, 19:58:41 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 3033 views, 941 downloads, 3 subscriptions

About: Automatically finds the best model with its best parameter settings for a given classification or regression task.

Changes:

Initial Announcement on mloss.org.


Logo Probabilistic Classification Vector Machine 0.22

by fmschleif - November 10, 2015, 13:16:19 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 8177 views, 1690 downloads, 3 subscriptions

About: PCVM library a c++/armadillo implementation of the Probabilistic Classification Vector Machine.

Changes:

30.10.2015 * code has been revised in some places fixing also some errors different multiclass schemes and hdf5 file support added. Some speed ups and memory savings by better handling of intermediate objects.

27.05.2015: - Matlab binding under Windows available. Added a solution file for VS'2013 express to compile a matlab mex binding. Can not yet confirm that under windows the code is really using multiple cores (under linux it does)

29.04.2015 * added an implementation of the Nystroem based PCVM includes: Nystroem based singular value decomposition (SVD), eigenvalue decomposition (EVD) and pseudo-inverse calculation (PINV)

22.04.2015 * implementation of the PCVM released


Logo Apache Mahout 0.11.1

by gsingers - November 9, 2015, 16:12:06 CET [ Project Homepage BibTeX Download ] 26778 views, 6627 downloads, 3 subscriptions

About: Apache Mahout is an Apache Software Foundation project with the goal of creating both a community of users and a scalable, Java-based framework consisting of many machine learning algorithm [...]

Changes:

Apache Mahout introduces a new math environment we call Samsara, for its theme of universal renewal. It reflects a fundamental rethinking of how scalable machine learning algorithms are built and customized. Mahout-Samsara is here to help people create their own math while providing some off-the-shelf algorithm implementations. At its core are general linear algebra and statistical operations along with the data structures to support them. You can use is as a library or customize it in Scala with Mahout-specific extensions that look something like R. Mahout-Samsara comes with an interactive shell that runs distributed operations on a Spark cluster. This make prototyping or task submission much easier and allows users to customize algorithms with a whole new degree of freedom. Mahout Algorithms include many new implementations built for speed on Mahout-Samsara. They run on Spark 1.3+ and some on H2O, which means as much as a 10x speed increase. You’ll find robust matrix decomposition algorithms as well as a Naive Bayes classifier and collaborative filtering. The new spark-itemsimilarity enables the next generation of cooccurrence recommenders that can use entire user click streams and context in making recommendations.


Logo Cognitive Foundry 3.4.2

by Baz - October 30, 2015, 06:53:03 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 35578 views, 5998 downloads, 4 subscriptions

About: The Cognitive Foundry is a modular Java software library of machine learning components and algorithms designed for research and applications.

Changes:
  • General:
    • Upgraded MTJ to 1.0.3.
  • Common:
    • Added package for hash function computation including Eva, FNV-1a, MD5, Murmur2, Prime, SHA1, SHA2
    • Added callback-based forEach implementations to Vector and InfiniteVector, which can be faster for iterating through some vector types.
    • Optimized DenseVector by removing a layer of indirection.
    • Added method to compute set of percentiles in UnivariateStatisticsUtil and fixed issue with percentile interpolation.
    • Added utility class for enumerating combinations.
    • Adjusted ScalarMap implementation hierarchy.
    • Added method for copying a map to VectorFactory and moved createVectorCapacity up from SparseVectorFactory.
    • Added method for creating square identity matrix to MatrixFactory.
    • Added Random implementation that uses a cached set of values.
  • Learning:
    • Implemented feature hashing.
    • Added factory for random forests.
    • Implemented uniform distribution over integer values.
    • Added Chi-squared similarity.
    • Added KL divergence.
    • Added general conditional probability distribution.
    • Added interfaces for Regression, UnivariateRegression, and MultivariateRegression.
    • Fixed null pointer exception that can happen in K-means with an empty cluster.
    • Fixed name of maxClusters property on AgglomerativeClusterer (was called maxMinDistance).
  • Text:
    • Improvements to LDA Gibbs sampler.

Logo SALSA.jl 0.0.5

by jumutc - September 28, 2015, 17:28:56 CET [ Project Homepage BibTeX Download ] 2489 views, 540 downloads, 1 subscription

About: SALSA (Software lab for Advanced machine Learning with Stochastic Algorithms) is an implementation of the well-known stochastic algorithms for Machine Learning developed in the high-level technical computing language Julia. The SALSA software package is designed to address challenges in sparse linear modelling, linear and non-linear Support Vector Machines applied to large data samples with user-centric and user-friendly emphasis.

Changes:

Initial Announcement on mloss.org.


Showing Items 1-20 of 83 on page 1 of 5: 1 2 3 4 5 Next