Projects that are tagged with bayesian inference.


Logo BayesPy 0.2.1

by jluttine - September 30, 2014, 16:35:11 CET [ Project Homepage BibTeX Download ] 1827 views, 536 downloads, 3 subscriptions

About: Variational Bayesian inference tools for Python

Changes:
  • Add workaround for matplotlib 1.4.0 bug related to interactive mode which affected monitoring

  • Fix bugs in Hinton diagrams for Gaussian variables


Logo JMLR GPstuff 4.5

by avehtari - July 22, 2014, 14:03:11 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 14162 views, 3513 downloads, 2 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarWhole Star
(based on 1 vote)

About: The GPstuff toolbox is a versatile collection of Gaussian process models and computational tools required for inference. The tools include, among others, various inference methods, sparse approximations and model assessment methods.

Changes:

2014-07-22 Version 4.5

New features

  • Input dependent noise and signal variance.

    • Tolvanen, V., Jylänki, P. and Vehtari, A. (2014). Expectation Propagation for Nonstationary Heteroscedastic Gaussian Process Regression. In Proceedings of IEEE International Workshop on Machine Learning for Signal Processing, accepted for publication. Preprint http://arxiv.org/abs/1404.5443
  • Sparse stochastic variational inference model.

    • Hensman, J., Fusi, N. and Lawrence, N. D. (2013). Gaussian processes for big data. arXiv preprint http://arxiv.org/abs/1309.6835.
  • Option 'autoscale' in the gp_rnd.m to get split normal approximated samples from the posterior predictive distribution of the latent variable.

    • Geweke, J. (1989). Bayesian Inference in Econometric Models Using Monte Carlo Integration. Econometrica, 57(6):1317-1339.

    • Villani, M. and Larsson, R. (2006). The Multivariate Split Normal Distribution and Asymmetric Principal Components Analysis. Communications in Statistics - Theory and Methods, 35(6):1123-1140.

Improvements

  • New unit test environment using the Matlab built-in test framework (the old Xunit package is still also supported).
  • Precomputed demo results (including the figures) are now available in the folder tests/realValues.
  • New demos demonstrating new features etc.
    • demo_epinf, demonstrating the input dependent noise and signal variance model
    • demo_svi_regression, demo_svi_classification
    • demo_modelcomparison2, demo_survival_comparison

Several minor bugfixes


Logo MICP 1.04

by kay_brodersen - March 26, 2013, 12:42:04 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 4493 views, 929 downloads, 2 subscriptions

About: This toolbox implements models for Bayesian mixed-effects inference on classification performance in hierarchical classification analyses.

Changes:

In addition to the existing MATLAB implementation, the toolbox now also contains an R package of the variational Bayesian algorithm for mixed-effects inference.


About: Matlab implementation of variational gaussian approximate inference for Bayesian Generalized Linear Models.

Changes:

Code restructure and bug fix.