Showing Items 181190 of 620 on page 19 of 62: First Previous 14 15 16 17 18 19 20 21 22 23 24 Next Last
About: The Accord.NET Framework is a .NET machine learning framework combined with audio and image processing libraries completely written in C#. It is a complete framework for building productiongrade computer vision, computer audition, signal processing and statistics applications even for commercial use. A comprehensive set of sample applications provide a fast start to get up and running quickly, and an extensive online documentation helps fill in the details. Changes:Adding a large number of new distributions, such as AndersonDaring, ShapiroWilk, Inverse ChiSquare, Lévy, Folded Normal, Shifted LogLogistic, Kumaraswamy, Trapezoidal, Uquadratic and BetaPrime distributions, BirnbaumSaunders, Generalized Normal, Gumbel, Power Lognormal, Power Normal, Triangular, Tukey Lambda, Logistic, Hyperbolic Secant, Degenerate and General Continuous distributions. Other additions include new statistical hypothesis tests such as AndersonDaring and ShapiroWilk; as well as support for all of LIBLINEAR's support vector machine algorithms; and format reading support for MATLAB/Octave matrices, LibSVM models, sparse LibSVM data files, and many others. For a complete list of changes, please see the full release notes at the release details page at: https://github.com/accordnet/framework/releases

About: C++ software for statistical classification, probability estimation and interpolation/nonlinear regression using variable bandwidth kernel estimation. Changes:New in Version 0.9.8:

About: STK++: A Statistical Toolkit Framework in C++ Changes:Inegrating openmp to the current release. Many enhancement in the clustering project. bug fix

About: a parallel LDA learning toolbox in MultiCore Systems for big topic modeling. Changes:Initial Announcement on mloss.org.

About: Gaussian processes with general nonlinear likelihoods using the unscented transform or Taylor series linearisation. Changes:Initial Announcement on mloss.org.

About: This is a library for solving nuSVM by using Wolfe's minimum norm point algorithm. You can solve binary classification problem. Changes:Initial Announcement on mloss.org.

About: A MATLAB toolbox for defining complex machine learning comparisons Changes:Initial Announcement on mloss.org.

About: This provide a semisupervised learning method based cotraining for RGBD object recognition. Besides, we evaluate four stateoftheart feature learing method under the semisupervised learning framework. Changes:Initial Announcement on mloss.org.

About: LogRegCrowds is a collection of Julia implementations of various approaches for learning a logistic regression model multiple annotators and crowds, namely the works of Raykar et al. (2010), Rodrigues et al. (2013) and Dawid and Skene (1979). Changes:Initial Announcement on mloss.org. Added GitHub page.

About: This library implements the OptimumPath Forest classifier for unsupervised and supervised learning. Changes:Initial Announcement on mloss.org.
