Showing Items 181190 of 625 on page 19 of 63: First Previous 14 15 16 17 18 19 20 21 22 23 24 Next Last
About: pyGPs is a Python package for Gaussian process (GP) regression and classification for machine learning. Changes:Changelog pyGPs v1.3.2December 15th 2014

About: LowRank and Sparse tools for Background Modeling and Subtraction in Videos. Changes:Initial Announcement on mloss.org.

About: A template based C++ reinforcement learning library Changes:Initial Announcement on mloss.org.

About: It is a Scala library for building Bayesian Networks with discrete/continuous variables and running deterministic Bayesian inference Changes:Initial Announcement on mloss.org.

About: C++ generic programming tools for machine learning Changes:Initial Announcement on mloss.org.

About: Java package for calculating Entropy for Machine Learning Applications. It has implemented several methods of handling missing values. So it can be used as a lab for examining missing values. Changes:Discretizing numerical values is added to calculate mode of values and fractional replacement of missing ones. class diagram is on the web http://profs.basu.ac.ir/bathaeian/free_space/jemla.rar

About: The Accord.NET Framework is a .NET machine learning framework combined with audio and image processing libraries completely written in C#. It is a complete framework for building productiongrade computer vision, computer audition, signal processing and statistics applications even for commercial use. A comprehensive set of sample applications provide a fast start to get up and running quickly, and an extensive online documentation helps fill in the details. Changes:Adding a large number of new distributions, such as AndersonDaring, ShapiroWilk, Inverse ChiSquare, Lévy, Folded Normal, Shifted LogLogistic, Kumaraswamy, Trapezoidal, Uquadratic and BetaPrime distributions, BirnbaumSaunders, Generalized Normal, Gumbel, Power Lognormal, Power Normal, Triangular, Tukey Lambda, Logistic, Hyperbolic Secant, Degenerate and General Continuous distributions. Other additions include new statistical hypothesis tests such as AndersonDaring and ShapiroWilk; as well as support for all of LIBLINEAR's support vector machine algorithms; and format reading support for MATLAB/Octave matrices, LibSVM models, sparse LibSVM data files, and many others. For a complete list of changes, please see the full release notes at the release details page at: https://github.com/accordnet/framework/releases

About: C++ software for statistical classification, probability estimation and interpolation/nonlinear regression using variable bandwidth kernel estimation. Changes:New in Version 0.9.8:

About: STK++: A Statistical Toolkit Framework in C++ Changes:Inegrating openmp to the current release. Many enhancement in the clustering project. bug fix

About: a parallel LDA learning toolbox in MultiCore Systems for big topic modeling. Changes:Initial Announcement on mloss.org.
