All entries.
Showing Items 141-150 of 622 on page 15 of 63: First Previous 10 11 12 13 14 15 16 17 18 19 20 Next Last

About: R package implementing statistical test and post hoc tests to compare multiple algorithms in multiple problems.

Changes:

Initial Announcement on mloss.org.


Logo Simple Generalized Learning Vector Quantization 1.0

by fmschleif - June 4, 2015, 10:49:49 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 2144 views, 531 downloads, 2 subscriptions

About: Simple and hopefully clean and easy to follow implementation of the Generalized Learning Vector Quantizer (GLVQ) with variants for metric adaptation (RGLVQ, GMLVQ, LiRaM).

Changes:

Initial Announcement on mloss.org.


Logo deepdetect 0.1

by beniz - June 2, 2015, 09:25:28 CET [ Project Homepage BibTeX Download ] 1657 views, 441 downloads, 3 subscriptions

About: A Deep Learning API and server

Changes:

Initial Announcement on mloss.org.


Logo LMW Tree 1.0

by cdevries - May 30, 2015, 11:42:23 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 2042 views, 399 downloads, 2 subscriptions

About: Learning M-Way Tree - Web Scale Clustering - EM-tree, K-tree, k-means, TSVQ, repeated k-means, clustering, random projections, random indexing, hashing, bit signatures

Changes:

Initial Announcement on mloss.org.


Logo ABACOC Adaptive Ball Cover for Classification 2.0

by kikot - May 29, 2015, 11:57:28 CET [ BibTeX BibTeX for corresponding Paper Download ] 4438 views, 1102 downloads, 3 subscriptions

About: Incremental (Online) Nonparametric Classifier. You can classify both points (standard) or matrices (multivariate time series). Java and Matlab code already available.

Changes:

version 2: parameterless system, constant model size, prediction confidence (for active learning).

NEW!! C++ version at: https://github.com/ilaria-gori/ABACOC


About: Jie Gui et al., "How to estimate the regularization parameter for spectral regression discriminant analysis and its kernel version?", IEEE Transactions on Circuits and Systems for Video Technology, vol. 24, no. 2, pp. 211-223, 2014

Changes:

Initial Announcement on mloss.org.


About: Jie Gui, Zhenan Sun, Guangqi Hou, Tieniu Tan, "An optimal set of code words and correntropy for rotated least squares regression", International Joint Conference on Biometrics, 2014, pp. 1-6

Changes:

Initial Announcement on mloss.org.


Logo ClusterEval 1.1

by cdevries - May 18, 2015, 22:01:01 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 5147 views, 1238 downloads, 2 subscriptions

About: Cluster quality Evaluation software. Implements cluster quality metrics based on ground truths such as Purity, Entropy, Negentropy, F1 and NMI. It includes a novel approach to correct for pathological or ineffective clusterings called 'Divergence from a Random Baseline'.

Changes:

Moved project to GitHub.


Logo GESL v1.01

by bellet - May 15, 2015, 11:54:04 CET [ BibTeX BibTeX for corresponding Paper Download ] 3122 views, 1216 downloads, 1 subscription

About: Learning string edit distance / similarity from data

Changes:

Added datasets used in the experiments of the paper


Logo XGBoost v0.4.0

by crowwork - May 12, 2015, 08:57:16 CET [ Project Homepage BibTeX Download ] 13631 views, 2511 downloads, 3 subscriptions

About: xgboost: eXtreme Gradient Boosting It is an efficient and scalable implementation of gradient boosting framework. The package includes efficient linear model solver and tree learning algorithm. The package can automatically do parallel computation with OpenMP, and it can be more than 10 times faster than existing gradient boosting packages such as gbm or sklearn.GBM . It supports various objective functions, including regression, classification and ranking. The package is made to be extensible, so that user are also allowed to define there own objectives easily. The newest version of xgboost now supports distributed learning on various platforms such as hadoop, mpi and scales to even larger problems

Changes:
  • Distributed version of xgboost that runs on YARN, scales to billions of examples

  • Direct save/load data and model from/to S3 and HDFS

  • Feature importance visualization in R module, by Michael Benesty

  • Predict leaf index

  • Poisson regression for counts data

  • Early stopping option in training

  • Native save load support in R and python

  • xgboost models now can be saved using save/load in R

  • xgboost python model is now pickable

  • sklearn wrapper is supported in python module

  • Experimental External memory version


Showing Items 141-150 of 622 on page 15 of 63: First Previous 10 11 12 13 14 15 16 17 18 19 20 Next Last