All entries.
Showing Items 421-430 of 561 on page 43 of 57: First Previous 38 39 40 41 42 43 44 45 46 47 48 Next Last

Logo JMLR PyBrain 0.3

by bayerj - March 3, 2010, 15:00:08 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 15944 views, 1823 downloads, 2 subscriptions

About: PyBrain is a versatile machine learning library for Python. Its goal is to provide flexible, easy-to-use yet still powerful algorithms for machine learning tasks, including a variety of predefined [...]

Changes:
  • more documentation, including new tutorials
  • new and updated example scripts
  • major restructuring of the reinforcement learning part
  • homogeneous interface for optimization algorithms
  • fast networks (arac) are now in an independent package
  • new algorithms, network structures, tools...

Logo r-cran-TWIX 0.2.10

by r-cran-robot - February 1, 2012, 00:00:12 CET [ Project Homepage BibTeX Download ] 8983 views, 1835 downloads, 1 subscription

About: Trees WIth eXtra splits

Changes:

Fetched by r-cran-robot on 2012-02-01 00:00:12.077735


Logo kernlab 0.9-9

by alexis - November 2, 2009, 16:03:50 CET [ Project Homepage BibTeX Download ] 10262 views, 2110 downloads, 0 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 1 vote)

About: kernlab provides kernel-based Machine Learning methods for classification, regression, clustering, novelty detection, quantile regression and dimensionality reduction. Among other methods kernlab [...]

Changes:

minor fixes in kcca and ksvm functions


Logo seqan 1.2

by sonne - November 2, 2009, 14:54:08 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 6431 views, 1235 downloads, 1 subscription

About: SeqAn is an open source C++ library of efficient algorithms and data structures for the analysis of sequences with the focus on biological data.

Changes:
  • 5 more applications, i.e. DFI, MicroRazerS, PairAlign, SeqCons, TreeRecon
  • stable release of RazerS supporting paired-end read mapping and configurable sensitivity
  • new alignment algorithms, e.g. banded, configurable alignments (overlap, semi-global, ...)
  • realignment algorithm
  • NGS data structures and formats, e.g. SAM, Amos, ...
  • new alphabets, e.g. Dna with base call qualities, profile characters
  • auxiliary data structures and algorithms, e.g. double ended queue, command line parser
  • positional scores
  • CMake support

Logo JMLR Shark 2.3.0

by igel - October 24, 2009, 22:12:48 CET [ Project Homepage BibTeX Download ] 26590 views, 5387 downloads, 1 subscription

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 3 votes)

About: SHARK is a modular C++ library for the design and optimization of adaptive systems. It provides various machine learning and computational intelligence techniques.

Changes:
  • new build system
  • minor bug fixes

Logo Elefant 0.4

by kishorg - October 17, 2009, 08:48:19 CET [ Project Homepage BibTeX Download ] 17658 views, 7534 downloads, 2 subscriptions

Rating Whole StarWhole Star1/2 StarEmpty StarEmpty Star
(based on 2 votes)

About: Elefant is an open source software platform for the Machine Learning community licensed under the Mozilla Public License (MPL) and developed using Python, C, and C++. We aim to make it the platform [...]

Changes:

This release contains the Stream module as a first step in the direction of providing C++ library support. Stream aims to be a software framework for the implementation of large scale online learning algorithms. Large scale, in this context, should be understood as something that does not fit in the memory of a standard desktop computer.

Added Bundle Methods for Regularized Risk Minimization (BMRM) allowing to choose from a list of loss functions and solvers (linear and quadratic).

Added the following loss classes: BinaryClassificationLoss, HingeLoss, SquaredHingeLoss, ExponentialLoss, LogisticLoss, NoveltyLoss, LeastMeanSquareLoss, LeastAbsoluteDeviationLoss, QuantileRegressionLoss, EpsilonInsensitiveLoss, HuberRobustLoss, PoissonRegressionLoss, MultiClassLoss, WinnerTakesAllMultiClassLoss, ScaledSoftMarginMultiClassLoss, SoftmaxMultiClassLoss, MultivariateRegressionLoss

Graphical User Interface provides now extensive documentation for each component explaining state variables and port descriptions.

Changed saving and loading of experiments to XML (thereby avoiding storage of large input data structures).

Unified automatic input checking via new static typing extending Python properties.

Full support for recursive composition of larger components containing arbitrary statically typed state variables.


Logo JMLR RL Glue and Codecs -- Glue 3.x and Codecs

by btanner - October 12, 2009, 07:50:03 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 16676 views, 1882 downloads, 1 subscription

About: RL-Glue allows agents, environments, and experiments written in Java, C/C++, Matlab, Python, and Lisp to inter operate, accelerating research by promoting software re-use in the community.

Changes:

RL-Glue paper has been published in JMLR.


Logo Online Random Forests 0.11

by amirsaffari - October 3, 2009, 17:25:41 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 8255 views, 1446 downloads, 1 subscription

About: This package implements the “Online Random Forests” (ORF) algorithm of Saffari et al., ICCV-OLCV 2009. This algorithm extends the offline Random Forests (RF) to learn from online training data samples. ORF is a multi-class classifier which is able to learn the classifier without 1-vs-all or 1-vs-1 binary decompositions.

Changes:

Initial Announcement on mloss.org.


Logo r-cran-VR 7.2-49

by r-cran-robot - September 25, 2009, 00:00:00 CET [ Project Homepage BibTeX Download ] 9447 views, 2444 downloads, 1 subscription

About: VR

Changes:

Fetched by r-cran-robot on 2009-10-03 07:16:05.643423


Logo EANT Without Structural Optimization 1.0

by yk - September 28, 2009, 12:34:38 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 4521 views, 1619 downloads, 1 subscription

About: EANT Without Structural Optimization is used to learn a policy in either complete or partially observable reinforcement learning domains of continuous state and action space.

Changes:

Initial Announcement on mloss.org.


Showing Items 421-430 of 561 on page 43 of 57: First Previous 38 39 40 41 42 43 44 45 46 47 48 Next Last