All entries.
Showing Items 151-160 of 539 on page 16 of 54: First Previous 11 12 13 14 15 16 17 18 19 20 21 Next Last

Logo BCFWstruct 1.0.0

by ppletscher - June 25, 2013, 16:19:33 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 1536 views, 369 downloads, 1 subscription

About: Block-Coordinate Frank-Wolfe Optimization for Structural SVMs

Changes:

Initial Announcement on mloss.org.


Logo LibBi 1.0.0

by lawmurray - June 23, 2013, 09:04:21 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 1446 views, 351 downloads, 1 subscription

About: Bayesian state-space modelling and inference on high-performance computer hardware.

Changes:

Initial Announcement on mloss.org.


About: This toolbox implements a novel visualization technique called Sectors on Sectors (SonS), and a extended version called Multidimensional Sectors on Sectors (MDSonS), for improving the interpretation of several data mining algorithms. The MDSonS method makes use of Multidimensional Scaling (MDS) to solve the main drawback of the previous method, namely, the lack of representing distances between pairs of clusters. These methods have been applied for visualizing the results of hierarchical clustering, Growing Hierarchical Self-Organizing Maps (GHSOM), classification trees and several manifolds. These methods make possible to extract all the existing relationships among centroids’ attributes at any hierarchy level.

Changes:

Initial Announcement on mloss.org.


Logo ClusterEval 1.0

by cdevries - June 16, 2013, 04:15:30 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 1529 views, 499 downloads, 1 subscription

About: Cluster quality Evaluation software. Implements cluster quality metrics based on ground truths such as Purity, Entropy, Negentropy, F1 and NMI. It includes a novel approach to correct for pathological or ineffective clusterings called 'Divergence from a Random Baseline'.

Changes:

Initial Announcement on mloss.org.


Logo AISAIC 1.0.0610

by fydennis - June 13, 2013, 21:54:55 CET [ BibTeX Download ] 1370 views, 836 downloads, 1 subscription

About: AISAIC software for analyzing human DNA copy numbers and detecting significant copy number alterations

Changes:

Initial Announcement on mloss.org.


About: This letter proposes a new multiple linear regression model using regularized correntropy for robust pattern recognition. First, we motivate the use of correntropy to improve the robustness of the classicalmean square error (MSE) criterion that is sensitive to outliers. Then an l1 regularization scheme is imposed on the correntropy to learn robust and sparse representations. Based on the half-quadratic optimization technique, we propose a novel algorithm to solve the nonlinear optimization problem. Second, we develop a new correntropy-based classifier based on the learned regularization scheme for robust object recognition. Extensive experiments over several applications confirm that the correntropy-based l1 regularization can improve recognition accuracy and receiver operator characteristic curves under noise corruption and occlusion.

Changes:

Initial Announcement on mloss.org.


About: Robust sparse representation has shown significant potential in solving challenging problems in computer vision such as biometrics and visual surveillance. Although several robust sparse models have been proposed and promising results have been obtained, they are either for error correction or for error detection, and learning a general framework that systematically unifies these two aspects and explore their relation is still an open problem. In this paper, we develop a half-quadratic (HQ) framework to solve the robust sparse representation problem. By defining different kinds of half-quadratic functions, the proposed HQ framework is applicable to performing both error correction and error detection. More specifically, by using the additive form of HQ, we propose an L1-regularized error correction method by iteratively recovering corrupted data from errors incurred by noises and outliers; by using the multiplicative form of HQ, we propose an L1-regularized error detection method by learning from uncorrupted data iteratively. We also show that the L1-regularization solved by soft-thresholding function has a dual relationship to Huber M-estimator, which theoretically guarantees the performance of robust sparse representation in terms of M-estimation. Experiments on robust face recognition under severe occlusion and corruption validate our framework and findings.

Changes:

Initial Announcement on mloss.org.


Logo JMLR Jstacs 2.1

by keili - June 3, 2013, 07:32:55 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 14160 views, 3378 downloads, 2 subscriptions

About: A Java framework for statistical analysis and classification of biological sequences

Changes:

New classes:

  • MultipleIterationsCondition: Requires another TerminationCondition to fail a contiguous, specified number of times
  • ClassifierFactory: Allows for creating standard classifiers
  • SeqLogoPlotter: Plot PNG sequence logos from within Jstacs
  • MultivariateGaussianEmission: Multivariate Gaussian emission density for a Hidden Markov Model
  • MEManager: Maximum entropy model

New features and improvements:

  • Alignment: Added free shift alignment
  • PerformanceMeasure and sub-classes: Extension to weighted test data
  • AbstractClassifier, ClassifierAssessment and sub-classes: Adaption to weighted PerformanceMeasures
  • DNAAlphabet: Parser speed-up
  • PFMComparator: Extension to PFM from other sources/databases
  • ToolBox: New convenience methods for computing several statistics (e.g., median, correlation)
  • SignificantMotifOccurrencesFinder: New methods for computing PWMs and statistics from predictions
  • SequenceScore and sub-classes: New method toString(NumberFormat)
  • DataSet: Adaption to weighted data, e.g., partitioning
  • REnvironment: Changed several methods from String to CharSequence

Restructuring:

  • changed MultiDimensionalSequenceWrapperDiffSM to MultiDimensionalSequenceWrapperDiffSS

Several minor new features, bug fixes, and code cleanups


Logo r-cran-CoxBoost 1.4

by r-cran-robot - October 1, 2014, 00:00:04 CET [ Project Homepage BibTeX Download ] 17003 views, 3443 downloads, 3 subscriptions

About: Cox models by likelihood based boosting for a single survival endpoint or competing risks

Changes:

Fetched by r-cran-robot on 2014-10-01 00:00:04.396778


Logo Cognitive Foundry 3.3.3

by Baz - May 21, 2013, 05:59:37 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 16400 views, 2617 downloads, 2 subscriptions

About: The Cognitive Foundry is a modular Java software library of machine learning components and algorithms designed for research and applications.

Changes:
  • General:
    • Made code able to compile under both Java 1.6 and 1.7. This required removing some potentially unsafe methods that used varargs with generics.
    • Upgraded XStream dependency to 1.4.4.
    • Improved support for regression algorithms in learning.
    • Added general-purpose adapters to make it easier to compose learning algorithms and adapt their input or output.
  • Common Core:
    • Added isSparse, toArray, dotDivide, and dotDivideEquals methods for Vector and Matrix.
    • Added scaledPlus, scaledPlusEquals, scaledMinus, and scaledMinusEquals to Ring (and thus Vector and Matrix) for potentially faster such operations.
    • Fixed issue where matrix and dense vector equals was not checking for equal dimensionality.
    • Added transform, transformEquals, tranformNonZeros, and transformNonZerosEquals to Vector.
    • Made LogNumber into a signed version of a log number and moved the prior unsigned implementation into UnsignedLogNumber.
    • Added EuclideanRing interface that provides methods for times, timesEquals, divide, and divideEquals. Also added Field interface that provides methods for inverse and inverseEquals. These interfaces are now implemented by the appropriate number classes such as ComplexNumber, MutableInteger, MutableLong, MutableDouble, LogNumber, and UnsignedLogNumber.
    • Added interface for Indexer and DefaultIndexer implementation for creating a zero-based indexing of values.
    • Added interfaces for MatrixFactoryContainer and DivergenceFunctionContainer.
    • Added ReversibleEvaluator, which various identity functions implement as well as a new utility class ForwardReverseEvaluatorPair to create a reversible evaluator from a pair of other evaluators.
    • Added method to create an ArrayList from a pair of values in CollectionUtil.
    • ArgumentChecker now properly throws assertion errors for NaN values. Also added checks for long types.
    • Fixed handling of Infinity in subtraction for LogMath.
    • Fixed issue with angle method that would cause a NaN if cosine had a rounding error.
    • Added new createMatrix methods to MatrixFactory that initializes the Matrix with the given value.
    • Added copy, reverse, and isEmpty methods for several array types to ArrayUtil.
    • Added utility methods for creating a HashMap, LinkedHashMap, HashSet, or LinkedHashSet with an expected size to CollectionUtil.
    • Added getFirst and getLast methods for List types to CollectionUtil.
    • Removed some calls to System.out and Exception.printStackTrace.
  • Common Data:
    • Added create method for IdentityDataConverter.
    • ReversibleDataConverter now is an extension of ReversibleEvaluator.
  • Learning Core:
    • Added general learner transformation capability to make it easier to adapt and compose algorithms. InputOutputTransformedBatchLearner provides this capability for supervised learning algorithms by composing together a triplet. CompositeBatchLearnerPair does it for a pair of algorithms.
    • Added a constant and identity learners.
    • Added Chebyshev, Identity, and Minkowski distance metrics.
    • Added methods to DatasetUtil to get the output values for a dataset and to compute the sum of weights.
    • Made generics more permissive for supervised cost functions.
    • Added ClusterDistanceEvaluator for taking a clustering that encodes the distance from an input value to all clusters and returns the result as a vector.
    • Fixed potential round-off issue in decision tree splitter.
    • Added random subspace technique, implemented in RandomSubspace.
    • Separated functionality from LinearFunction into IdentityScalarFunction. LinearFunction by default is the same, but has parameters that can change the slope and offset of the function.
    • Default squashing function for GeneralizedLinearModel and DifferentiableGeneralizedLinearModel is now a linear function instead of an atan function.
    • Added a weighted estimator for the Poisson distribution.
    • Added Regressor interface for evaluators that are the output of (single-output) regression learning algorithms. Existing such evaluators have been updated to implement this interface.
    • Added support for regression ensembles including additive and averaging ensembles with and without weights. Added a learner for regression bagging in BaggingRegressionLearner.
    • Added a simple univariate regression class in UnivariateLinearRegression.
    • MultivariateDecorrelator now is a VectorInputEvaluator and VectorOutputEvaluator.
    • Added bias term to PrimalEstimatedSubGradient.
  • Text Core:
    • Fixed issue with the start position for tokens from LetterNumberTokenizer being off by one except for the first one.

Showing Items 151-160 of 539 on page 16 of 54: First Previous 11 12 13 14 15 16 17 18 19 20 21 Next Last