About: libDAI provides free & open source implementations of various (approximate) inference methods for graphical models with discrete variables, including Bayesian networks and Markov Random Fields. Changes:Release 0.3.2 fixes various bugs and adds GLC (Generalized Loop Corrections) written by Siamak Ravanbakhsh.

About: Incremental (Online) Nonparametric Classifier. You can classify both points (standard) or matrices (multivariate time series). Java and Matlab code already available. Changes:version 2: parameterless system, constant model size, prediction confidence (for active learning). NEW!! C++ version at: https://github.com/ilariagori/ABACOC

About: Jie Gui et al., "How to estimate the regularization parameter for spectral regression discriminant analysis and its kernel version?", IEEE Transactions on Circuits and Systems for Video Technology, vol. 24, no. 2, pp. 211223, 2014 Changes:Initial Announcement on mloss.org. 
About: Jie Gui, Zhenan Sun, Guangqi Hou, Tieniu Tan, "An optimal set of code words and correntropy for rotated least squares regression", International Joint Conference on Biometrics, 2014, pp. 16 Changes:Initial Announcement on mloss.org.

About: xgboost: eXtreme Gradient Boosting It is an efficient and scalable implementation of gradient boosting framework. The package includes efficient linear model solver and tree learning algorithm. The package can automatically do parallel computation with OpenMP, and it can be more than 10 times faster than existing gradient boosting packages such as gbm or sklearn.GBM . It supports various objective functions, including regression, classification and ranking. The package is made to be extensible, so that user are also allowed to define there own objectives easily. The newest version of xgboost now supports distributed learning on various platforms such as hadoop, mpi and scales to even larger problems Changes:

About: This MATLAB package provides the LOMO feature extraction and the XQDA metric learning algorithms proposed in our CVPR 2015 paper. It is fast, and effective for person reidentification. For more details, please visit http://www.cbsr.ia.ac.cn/users/scliao/projects/lomo_xqda/. Changes:Initial Announcement on mloss.org.

About: Bayesian Logic (BLOG) is a probabilistic modeling language. It is designed for representing relations and uncertainties among real world objects. Changes:Initial Announcement on mloss.org.

About: FsAlg is a linear algebra library that supports generic types. Changes:Initial Announcement on mloss.org.

About: Jmlp is a java platform for both of the machine learning experiments and application. I have tested it on the window platform. But it should be applicable in the linux platform due to the crossplatform of Java language. It contains the classical classification algorithm (Discrete AdaBoost.MH, Real AdaBoost.MH, SVM, KNN, MCE,MLP,NB) and feature reduction(KPCA,PCA,Whiten) etc. Changes:Initial Announcement on mloss.org.

About: Libcmaes is a multithreaded C++11 library (with Python bindings) for high performance blackbox stochastic optimization of difficult, possibly nonlinear and nonconvex functions, using the CMAES algorithm for Covariance Matrix Adaptation Evolution Strategy. Libcmaes is useful to minimize / maximize any function, without information regarding gradient or derivability. Changes:This is a major release, with several novelties, improvements and fixes, among which:

About: CN24 is a complete semantic segmentation framework using fully convolutional networks. Changes:Initial Announcement on mloss.org.

About: The DLLearner framework contains several algorithms for supervised concept learning in Description Logics (DLs) and OWL. Changes:See http://dllearner.org/development/changelog/.

About: The autoencoder based data clustering toolkit provides a quick start of clustering based on deep autoencoder nets. This toolkit can cluster data in feature space with a deep nonlinear nets. Changes:Initial Announcement on mloss.org.

About: The fertilized forests project has the aim to provide an easy to use, easy to extend, yet fast library for decision forests. It summarizes the research in this field and provides a solid platform to extend it. Offering consistent interfaces to C++, Python and Matlab and being available for all major compilers gives the user high flexibility for using the library. Changes:Initial Announcement on mloss.org.

About: Hubnessaware Machine Learning for Highdimensional Data Changes:

About: A template based C++ reinforcement learning library Changes:Initial Announcement on mloss.org.

About: Java package for calculating Entropy for Machine Learning Applications. It has implemented several methods of handling missing values. So it can be used as a lab for examining missing values. Changes:Discretizing numerical values is added to calculate mode of values and fractional replacement of missing ones. class diagram is on the web http://profs.basu.ac.ir/bathaeian/free_space/jemla.rar

About: The Accord.NET Framework is a .NET machine learning framework combined with audio and image processing libraries completely written in C#. It is a complete framework for building productiongrade computer vision, computer audition, signal processing and statistics applications even for commercial use. A comprehensive set of sample applications provide a fast start to get up and running quickly, and an extensive online documentation helps fill in the details. Changes:Adding a large number of new distributions, such as AndersonDaring, ShapiroWilk, Inverse ChiSquare, Lévy, Folded Normal, Shifted LogLogistic, Kumaraswamy, Trapezoidal, Uquadratic and BetaPrime distributions, BirnbaumSaunders, Generalized Normal, Gumbel, Power Lognormal, Power Normal, Triangular, Tukey Lambda, Logistic, Hyperbolic Secant, Degenerate and General Continuous distributions. Other additions include new statistical hypothesis tests such as AndersonDaring and ShapiroWilk; as well as support for all of LIBLINEAR's support vector machine algorithms; and format reading support for MATLAB/Octave matrices, LibSVM models, sparse LibSVM data files, and many others. For a complete list of changes, please see the full release notes at the release details page at: https://github.com/accordnet/framework/releases

About: Gaussian processes with general nonlinear likelihoods using the unscented transform or Taylor series linearisation. Changes:Initial Announcement on mloss.org.

About: This is a library for solving nuSVM by using Wolfe's minimum norm point algorithm. You can solve binary classification problem. Changes:Initial Announcement on mloss.org.
