About: Gaussian processes with general nonlinear likelihoods using the unscented transform or Taylor series linearisation. Changes:Initial Announcement on mloss.org.

About: OpenNN is an open source class library written in C++ which implements neural networks. The library has been designed to learn from both data sets and mathematical models. Changes:Initial Announcement on mloss.org.

About: This is a library for solving nuSVM by using Wolfe's minimum norm point algorithm. You can solve binary classification problem. Changes:Initial Announcement on mloss.org.

About: Libcmaes is a multithreaded C++11 library (with Python bindings) for high performance blackbox stochastic optimization of difficult, possibly nonlinear and nonconvex functions, using the CMAES algorithm for Covariance Matrix Adaptation Evolution Strategy. Libcmaes is useful to minimize / maximize any function, without information regarding gradient or derivability. Changes:This is an important update:

About: This project is a C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real world problems. Changes:This release contains mostly minor bug fixes and usability improvements, with the notable exception of new routines for extracting localbinarypattern features from images and improved tools for learning distance metrics.

About: Hubnessaware Machine Learning for Highdimensional Data Changes:Initial Announcement on mloss.org.

About: This provide a semisupervised learning method based cotraining for RGBD object recognition. Besides, we evaluate four stateoftheart feature learing method under the semisupervised learning framework. Changes:Initial Announcement on mloss.org.

About: Armadillo is a template C++ linear algebra library aiming towards a good balance between speed and ease of use, with a function syntax similar to MATLAB. Matrix decompositions are provided through optional integration with LAPACK, or one of its high performance dropin replacements (eg. Intel MKL, OpenBLAS). Changes:

About: LogRegCrowds is a collection of Julia implementations of various approaches for learning a logistic regression model multiple annotators and crowds, namely the works of Raykar et al. (2010), Rodrigues et al. (2013) and Dawid and Skene (1979). Changes:Initial Announcement on mloss.org.

About: pySPACE is the abbreviation for "Signal Processing and Classification Environment in Python using YAML and supporting parallelization". It is a modular software for processing of large data streams that has been specifically designed to enable distributed execution and empirical evaluation of signal processing chains. Various signal processing algorithms (so called nodes) are available within the software, from finite impulse response filters over datadependent spatial filters (e.g. CSP, xDAWN) to established classifiers (e.g. SVM, LDA). pySPACE incorporates the concept of node and node chains of the MDP framework. Due to its modular architecture, the software can easily be extended with new processing nodes and more general operations. Large scale empirical investigations can be configured using simple text configuration files in the YAML format, executed on different (distributed) computing modalities, and evaluated using an interactive graphical user interface. Changes:improved testing, improved documentation, windows compatibility, more algorithms

About: revised version of BACOM Changes:Initial Announcement on mloss.org.

About: BayesOpt is an efficient, C++ implementation of the Bayesian optimization methodology for nonlinearoptimization, experimental design and stochastic bandits. In the literature it is also called Sequential Kriging Optimization (SKO) or Efficient Global Optimization (EGO). There are also interfaces for C, Matlab/Octave and Python. Changes:Fixed bugs and doc typos

About: A MATLAB toolkit for performing generalized regression with equality/inequality constraints on the function value/gradient. Changes:Initial Announcement on mloss.org.

About: A platformindependent C++ framework for machine learning, graphical models, and computer vision research and development. Changes:Version 1.8:

About: xgboost: eXtreme Gradient Boosting It is an efficient and scalable implementation of gradient boosting framework. The package includes efficient linear model solver and tree learning algorithm. The package can automatically do parallel computation with OpenMP, and it can be more than 10 times faster than existing gradient boosting packages such as gbm or sklearn.GBM . It supports various objective functions, including regression, classification and ranking. The package is made to be extensible, so that user are also allowed to define there own objectives easily. Changes:New features:  R support that is now on CRAN

About: A Content Anomaly Detector based on nGrams Changes:Lots and lots of cool new features and bugfixes ;)

About: The implementation of adaptive probabilistic mappings. Changes:Initial Announcement on mloss.org.

About: Scriptfriendly commandline tools for machine learning and data mining tasks. (The commandline tools wrap functionality from a public domain C++ class library.) Changes:Added support for CUDA GPUparallelized neural network layers, and several other new features. Full list of changes at http://waffles.sourceforge.net/docs/changelog.html

About: Online Action Recognition via Nonparametric Incremental Learning. Java and Matlab code already available. A Python version and the Java source code will be released soon. Changes:Initial release of the library, future changes will be advertised shortly.

About: ARTOS can be used to quickly learn models for visual object detection without having to collect a set of samples manually. To make this possible, it uses ImageNet, a large image database with more than 20,000 categories. Changes:Initial Announcement on mloss.org.
