Projects running under platform independent.
Showing Items 1-20 of 92 on page 1 of 5: 1 2 3 4 5 Next

Logo Java Data Mining Package 0.3.0

by arndt - August 19, 2015, 15:44:46 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 454 views, 82 downloads, 3 subscriptions

About: A Java library for machine learning and data analytics

Changes:

Initial Announcement on mloss.org.


Logo Universal Java Matrix Package 0.3.0

by arndt - July 31, 2015, 14:23:14 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 11646 views, 2207 downloads, 3 subscriptions

About: The Universal Java Matrix Package (UJMP) is a data processing tool for Java. Unlike JAMA and Colt, it supports multi-threading and is therefore much faster on current hardware. It does not only support matrices with double values, but instead handles every type of data as a matrix through a common interface, e.g. CSV files, Excel files, images, WAVE audio files, tables in SQL data bases, and much more.

Changes:

Updated to version 0.3.0


Logo KeLP 1.2.1

by kelpadmin - July 24, 2015, 15:43:13 CET [ Project Homepage BibTeX Download ] 2848 views, 724 downloads, 3 subscriptions

About: Kernel-based Learning Platform (KeLP) is Java framework that supports the implementation of kernel-based learning algorithms, as well as an agile definition of kernel functions over generic data representation, e.g. vectorial data or discrete structures. The framework has been designed to decouple kernel functions and learning algorithms, through the definition of specific interfaces. Once a new kernel function has been implemented, it can be automatically adopted in all the available kernel-machine algorithms. KeLP includes different Online and Batch Learning algorithms for Classification, Regression and Clustering, as well as several Kernel functions, ranging from vector-based to structural kernels. It allows to build complex kernel machine based systems, leveraging on JSON/XML interfaces to instantiate classifiers without writing a single line of code.

Changes:

The code for learning relations between pairs of short texts has been released, and includes the approach described in:

Simone Filice, Giovanni Da San Martino and Alessandro Moschitti. Relational Information for Learning from Structured Text Pairs. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics, ACL 2015.

In particular this new release includes:

  • TreePairRelTagger: a manipulator that establishes relations between two tree representations (available in the maven project discreterepresentation)

  • 5 new kernels on pairs: released in the maven project standard-kernel

Check out this new version from our repositories. API Javadoc is already available. Your suggestions will be very precious for us, so download and try KeLP 1.2.1!


About: Nowadays, this is very popular to use the deep architectures in machine learning. Deep Belief Networks (DBNs) are deep architectures that use stack of Restricted Boltzmann Machines (RBM) to create a powerful generative model using training data. DBNs have many ability like feature extraction and classification that are used in many applications like image processing, speech processing and etc. According to the results of the experiments conducted on MNIST (image), ISOLET (speech), and 20 Newsgroups (text) datasets, it was shown that the toolbox can learn automatically a good representation of the input from unlabeled data with better discrimination between different classes. In addition, the toolbox supports different sampling methods (e.g. Gibbs, CD, PCD and our new FEPCD method), different sparsity methods (quadratic, rate distortion and our new normal method), different RBM types (generative and discriminative), GPU, etc. The toolbox is a user-friendly open source software and is freely available on the website.

Changes:

New features

  • GPU support (about 5 times faster than CPU - test in GPU: NVIDEA GeForce GTX 780 CPU: AMD FX 8150 Eight-Core 3.6 GHz)
  • Cast DBN parameters to single and double data types
  • Sparsity in RBM with three different methods
  • Plotting bases function
  • Classification and feature extraction on 20 Newsgroups datasets
  • Code correction in using back propagation.
  • Runtime and memory code optimization in Normalization and Shuffling

cardinal


Logo JMLR GPstuff 4.6

by avehtari - July 15, 2015, 15:08:06 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 23467 views, 5589 downloads, 2 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarWhole Star
(based on 1 vote)

About: The GPstuff toolbox is a versatile collection of Gaussian process models and computational tools required for inference. The tools include, among others, various inference methods, sparse approximations and model assessment methods.

Changes:

2015-07-09 Version 4.6

Development and release branches available at https://github.com/gpstuff-dev/gpstuff

New features

  • Use Pareto smoothed importance sampling (Vehtari & Gelman, 2015) for

  • importance sampling leave-one-out cross-validation (gpmc_loopred.m)

  • importance sampling integration over hyperparameters (gp_ia.m)

  • importance sampling part of the logistic Gaussian process density estimation (lgpdens.m)

  • references:

    • Aki Vehtari and Andrew Gelman (2015). Pareto smoothed importance sampling. arXiv preprint arXiv:1507.02646.
    • Aki Vehtari, Andrew Gelman and Jonah Gabry (2015). Efficient implementation of leave-one-out cross-validation and WAIC for evaluating fitted Bayesian models.
  • New covariance functions

    • gpcf_additive creates a mixture over products of kernels for each dimension reference: Duvenaud, D. K., Nickisch, H., & Rasmussen, C. E. (2011). Additive Gaussian processes. In Advances in neural information processing systems, pp. 226-234.
    • gpcf_linearLogistic corresponds to logistic mean function
    • gpcf_linearMichelismenten correpsonds Michelis Menten mean function

Improvements - faster EP moment calculation for lik_logit

Several minor bugfixes


Logo JMLR GPML Gaussian Processes for Machine Learning Toolbox 3.6

by hn - July 6, 2015, 12:31:28 CET [ Project Homepage BibTeX Download ] 27029 views, 6288 downloads, 4 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarWhole Star
(based on 2 votes)

About: The GPML toolbox is a flexible and generic Octave 3.2.x and Matlab 7.x implementation of inference and prediction in Gaussian Process (GP) models.

Changes:
  • added a new inference function infGrid_Laplace allowing to use non-Gaussian likelihoods for large grids

  • fixed a bug due to Octave evaluating norm([]) to a tiny nonzero value, modified all lik/lik*.m functions reported by Philipp Richter

  • small bugfixes in covGrid and infGrid

  • bugfix in predictive variance of likNegBinom due to Seth Flaxman

  • bugfix in infFITC_Laplace as suggested by Wu Lin

  • bugfix in covPP{iso,ard}


About: R package implementing statistical test and post hoc tests to compare multiple algorithms in multiple problems.

Changes:

Initial Announcement on mloss.org.


Logo BayesPy 0.3.5

by jluttine - June 9, 2015, 13:17:00 CET [ Project Homepage BibTeX Download ] 6970 views, 1735 downloads, 3 subscriptions

About: Variational Bayesian inference tools for Python

Changes:
  • Fix indexing bug in VB optimization (not VB-EM)
  • Fix demos

Logo Simple Generalized Learning Vector Quantization 1.0

by fmschleif - June 4, 2015, 10:49:49 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 930 views, 242 downloads, 2 subscriptions

About: Simple and hopefully clean and easy to follow implementation of the Generalized Learning Vector Quantizer (GLVQ) with variants for metric adaptation (RGLVQ, GMLVQ, LiRaM).

Changes:

Initial Announcement on mloss.org.


Logo KeBABS 1.2.3

by UBod - May 26, 2015, 10:55:44 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 5678 views, 993 downloads, 3 subscriptions

About: Kernel-Based Analysis of Biological Sequences

Changes:
  • new export kebabsCollectInfo for collection of package info
  • update of version dependency to Biostrings, XVector, S4Vector
  • correction for leading + or - in factor label
  • change of bibtex style sheet in vignette to plainnat.bst

Logo Cognitive Foundry 3.4.1

by Baz - May 13, 2015, 06:55:24 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 21308 views, 3526 downloads, 3 subscriptions

About: The Cognitive Foundry is a modular Java software library of machine learning components and algorithms designed for research and applications.

Changes:
  • General:
    • Updated MTJ to version 1.0.2 and netlib-java to 1.1.2.
    • Updated XStream to version 1.4.8.
  • Common:
    • Fixed issue in VectorUnionIterator.
  • Learning:
    • Added Alternating Least Squares (ALS) Factorization Machine training implementation.
    • Fixed performance issue in Factorization Machine where linear component was not making use of sparsity.
    • Added utility function to sigmoid unit.

Logo MIPS, The migrant implementation system 1.0

by thomasfannes - April 28, 2015, 15:07:05 CET [ Project Homepage BibTeX Download ] 883 views, 259 downloads, 3 subscriptions

About: MIPS is a software library for state-of-the-art graph mining algorithms. The library is platform independent, written in C++(03), and aims at implementing generic and efficient graph mining algorithms.

Changes:

description update


Logo Choquistic Utilitaristic Regression 1.00

by AliFall - April 17, 2015, 11:31:20 CET [ BibTeX BibTeX for corresponding Paper Download ] 722 views, 286 downloads, 2 subscriptions

About: This Matlab package implements a method for learning a choquistic regression model (represented by a corresponding Moebius transform of the underlying fuzzy measure), using the maximum likelihood approach proposed in [2], eqquiped by sigmoid normalization, see [1].

Changes:

Initial Announcement on mloss.org.


Logo Blocks 0.1

by bartvm - March 30, 2015, 22:25:02 CET [ Project Homepage BibTeX Download ] 893 views, 264 downloads, 3 subscriptions

About: A Theano framework for building and training neural networks

Changes:

Initial Announcement on mloss.org.


Logo apsis 0.1.1

by fdiehl - March 17, 2015, 08:27:02 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 1057 views, 236 downloads, 2 subscriptions

About: A toolkit for hyperparameter optimization for machine learning algorithms.

Changes:

Initial Announcement on mloss.org.


Logo JMLR Mulan 1.5.0

by lefman - February 23, 2015, 21:19:05 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 18710 views, 6957 downloads, 2 subscriptions

About: Mulan is an open-source Java library for learning from multi-label datasets. Multi-label datasets consist of training examples of a target function that has multiple binary target variables. This means that each item of a multi-label dataset can be a member of multiple categories or annotated by many labels (classes). This is actually the nature of many real world problems such as semantic annotation of images and video, web page categorization, direct marketing, functional genomics and music categorization into genres and emotions.

Changes:

Learners

  • MLCSSP.java: Added the MLCSSP algorithm (from ICML 2013)
  • Enhancements of multi-target regression capabilities
  • Improved CLUS support
  • Added pairwise classifier and pairwise transformation

Measures/Evaluation

  • Providing training data in the Evaluator is unnecessary in the case of specific measures.
  • Examples with missing ground truth are not skipped for measures that handle missing values.
  • Added logistics and squared error losses and measures

Bug fixes

  • IndexOutOfBounds in calculation of MiAP and GMiAP
  • Bug fix in Rcut.java
  • When in rank/score mode the meta-data contained additional unecessary attributes. (Newton Spolaor)

API changes

  • Upgrade to Java 7
  • Upgrade to Weka 3.7.10

Miscalleneous

  • Small changes and improvements in the wrapper classes for the CLUS library
  • ENTCS13FeatureSelection.java (new experiment)
  • Enumeration is now used for specifying the type of meta-data. (Newton Spolaor)

Logo Machine Learning Support System MALSS 0.5.0

by canard0328 - February 20, 2015, 15:56:02 CET [ Project Homepage BibTeX Download ] 928 views, 243 downloads, 1 subscription

About: MALSS is a python module to facilitate machine learning tasks.

Changes:

Initial Announcement on mloss.org.


About: Learns dynamic network changes across conditions and visualize the results in Cytoscape.

Changes:

Initial Announcement on mloss.org.


Logo ExtRESCAL 0.7.2

by nzhiltsov - January 20, 2015, 00:35:15 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 5339 views, 1044 downloads, 2 subscriptions

About: Scalable tensor factorization

Changes:
  • Improve (speed up) initialization of A by summation

Logo pyGPs 1.3.2

by mn - January 17, 2015, 13:08:43 CET [ Project Homepage BibTeX Download ] 5207 views, 1271 downloads, 4 subscriptions

About: pyGPs is a Python package for Gaussian process (GP) regression and classification for machine learning.

Changes:

Changelog pyGPs v1.3.2

December 15th 2014

  • pyGPs added to pip
  • mathematical definitions of kernel functions available in documentation
  • more error message added

Showing Items 1-20 of 92 on page 1 of 5: 1 2 3 4 5 Next