About: Embarrassingly Parallel Array Computing: EPAC is a machine learning workflow builder. Changes:Initial Announcement on mloss.org.

About: MyMediaLite is a lightweight, multipurpose library of recommender system algorithms. Changes:Mostly bug fixes. For details see: https://github.com/zenogantner/MyMediaLite/blob/master/doc/Changes

About: The scikitlearn project is a machine learning library in Python. Changes:Update for 0.14.1

About: A library for artificial neural networks. Changes:Added algorithms:

About: Ankus is an open source data mining / machine learning based MapReduce that supports a variety of advanced algorithms. Changes:Initial Announcement on mloss.org.

About: The Rchemcpp package implements the marginalized graph kernel and extensions, Tanimoto kernels, graph kernels, pharmacophore and 3D kernels suggested for measuring the similarity of molecules. Changes:Moved from CRAN to Bioconductor. Improved handling of molecules, visualization and examples.

About: A Matlab implementation of Multilinear PCA (MPCA) and MPCA+LDA for dimensionality reduction of tensor data with sample code on gait recognition Changes:

About: The mission of this project is to build and support a community interested in machine learning and machine intelligence based on modeling the neocortex and the principles upon which it works. Changes:Initial Announcement on mloss.org.

About: This evaluation toolkit provides a unified framework for evaluating bagofwords based encoding methods over several standard image classification datasets. Changes:Initial Announcement on mloss.org.

About: Bayesian statespace modelling and inference on highperformance computer hardware. Changes:Initial Announcement on mloss.org.

About: This toolbox implements a novel visualization technique called Sectors on Sectors (SonS), and a extended version called Multidimensional Sectors on Sectors (MDSonS), for improving the interpretation of several data mining algorithms. The MDSonS method makes use of Multidimensional Scaling (MDS) to solve the main drawback of the previous method, namely, the lack of representing distances between pairs of clusters. These methods have been applied for visualizing the results of hierarchical clustering, Growing Hierarchical SelfOrganizing Maps (GHSOM), classification trees and several manifolds. These methods make possible to extract all the existing relationships among centroids’ attributes at any hierarchy level. Changes:Initial Announcement on mloss.org.

About: A fast and robust learning of Bayesian networks Changes:Initial Announcement on mloss.org.

About: HLearn makes simple machine learning routines available in Haskell by expressing them according to their algebraic structure Changes:Updated to version 1.0

About: Support Vectors Machine library in .net with CUDA support. Library includes GPU SVM solver for kernels linear,RBF,ChiSquare and Exp ChiSquare which use NVIDIA CUDA technology. It allows for classification of feature rich sparse datasets through utilization of sparse matrix formats CSR, EllpackR or Sliced EllRT Changes:Initial Announcement on mloss.org.

About: MLDemos is a userfriendly visualization interface for various machine learning algorithms for classification, regression, clustering, projection, dynamical systems, reward maximisation and reinforcement learning. Changes:New Visualization and Dataset Features Added 3D visualization of samples and classification, regression and maximization results Added Visualization panel with individual plots, correlations, density, etc. Added Editing tools to drag/magnet data, change class, increase or decrease dimensions of the dataset Added categorical dimensions (indexed dimensions with nonnumerical values) Added Dataset Editing panel to swap, delete and rename dimensions, classes or categorical values Several bugfixes for display, import/export of data, classification performance New Algorithms and methodologies Added Projections to preprocess data (which can then be classified/regressed/clustered), with LDA, PCA, KernelPCA, ICA, CCA Added GridSearch panel for batchtesting ranges of values for up to two parameters at a time Added OnevsAll multiclass classification for nonmulticlass algorithms Trained models can now be kept and tested on new data (training on one dataset, testing on another) Added a dataset generator panel for standard toy datasets (e.g. swissroll, checkerboard,...) Added a number of clustering, regression and classification algorithms (FLAME, DBSCAN, LOWESS, CCA, KMEANS++, GP Classification, Random Forests) Added Save/Load Model option for GMMs and SVMs Added Growing Hierarchical Self Organizing Maps (original code by Michael Dittenbach) Added Automatic Relevance Determination for SVM with RBF kernel (Thanks to Ashwini Shukla!)

About: Orange is a componentbased machine learning and data mining software. It includes a friendly yet powerful and flexible graphical user interface for visual programming. For more advanced use(r)s, [...] Changes:The core of the system (except the GUI) no longer includes any GPL code and can be licensed under the terms of BSD upon request. The graphical part remains under GPL. Changed the BibTeX reference to the paper recently published in JMLR MLOSS.

About: SVDFeature is a toolkit for developing generic collaborative filtering algorithms by defining features. Changes:JMLR MLOSS version.

About: The UniverSVM is a SVM implementation written in C/C++. Its functionality comprises large scale transduction via CCCP optimization, sparse solutions via CCCP optimization and datadependent [...] Changes:Minor changes: fix bug on set_alphas_b0 function (thanks to Ferdinand Kaiser  ferdinand.kaiser@tut.fi)

About: An implementation of MROGH descriptor. For more information, please refer to: “Bin Fan, Fuchao Wu and Zhanyi Hu, Aggregating Gradient Distributions into Intensity Orders: A Novel Local Image Descriptor, CVPR 2011, pp.23772384.” The most uptodate information can be found at : http://vision.ia.ac.cn/Students/bfan/index.htm Changes:Initial Announcement on mloss.org.

About: TurboParser is a free multilingual dependency parser based on linear programming developed by André Martins. It is based on joint work with Noah Smith, Mário Figueiredo, Eric Xing, Pedro Aguiar. Changes:This version introduces a number of new features:
Note: The runtimes above are approximate, and based on experiments with a desktop machine with a Intel Core i7 CPU 3.4 GHz and 8GB RAM. To run this software, you need a standard C++ compiler. This software has the following external dependencies: AD3, a library for approximate MAP inference; Eigen, a template library for linear algebra; googleglog, a library for logging; gflags, a library for commandline flag processing. All these libraries are free software and are provided as tarballs in this package. This software has been tested on Linux, but it should run in other platforms with minor adaptations.
