Projects running under linux.
Showing Items 21-40 of 224 on page 2 of 12: Previous 1 2 3 4 5 6 7 Next Last

Logo Lua MapReduce v0.3.4

by pakozm - June 23, 2014, 11:20:59 CET [ Project Homepage BibTeX Download ] 1164 views, 254 downloads, 2 subscriptions

About: Lua-MapReduce framework implemented in Lua using luamongo driver and MongoDB as storage. It follows Iterative MapReduce for training of Machine Learning statistical models.

Changes:
  • Solved bug in reduce when num_reducers > 10
  • Added Travis CI compilation.
  • Improved efficiency of reduce merge using a heap queue.

Logo OpenOpt 0.54

by Dmitrey - June 15, 2014, 14:50:37 CET [ Project Homepage BibTeX Download ] 41176 views, 8686 downloads, 3 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 2 votes)

About: Universal Python-written numerical optimization toolbox. Problems: NLP, LP, QP, NSP, MILP, LSP, LLSP, MMP, GLP, SLE, MOP etc; general logical constraints, categorical variables, automatic differentiation, stochastic programming, interval analysis, many other goodies

Changes:

http://openopt.org/Changelog


Logo JMLR Information Theoretical Estimators 0.60

by szzoli - June 3, 2014, 00:17:33 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 45961 views, 9893 downloads, 2 subscriptions

About: ITE (Information Theoretical Estimators) is capable of estimating many different variants of entropy, mutual information, divergence, association measures, cross quantities and kernels on distributions. Thanks to its highly modular design, ITE supports additionally (i) the combinations of the estimation techniques, (ii) the easy construction and embedding of novel information theoretical estimators, and (iii) their immediate application in information theoretical optimization problems.

Changes:
  • Quick test on the Tsallis divergence: introduced.

  • Pearson chi square divergence estimation in the exponential family (MLE + analytical formula): added.


Logo A Pattern Recognizer In Lua with ANNs v0.3.1

by pakozm - May 30, 2014, 10:49:10 CET [ Project Homepage BibTeX Download ] 2324 views, 540 downloads, 2 subscriptions

About: APRIL-ANN toolkit (A Pattern Recognizer In Lua with Artificial Neural Networks). This toolkit incorporates ANN algorithms (as dropout, stacked denoising auto-encoders, convolutional neural networks), with other pattern recognition methods as hidden makov models (HMMs) among others.

Changes:
  • Removed bugs.
  • Added Travis CI support.
  • KNN and clustering algorithms.
  • ZCA and PCA whitening.
  • Quickprop and ASGD optimization algorithms.
  • QLearning trainer.
  • Sparse float matrices are available in CSC an CSR formats.
  • Compilation with Homebrew and MacPorts available.
  • Compilation issues in Ubuntu 12.04 solved.

Logo Weight HMM 1.0

by SongTao - May 27, 2014, 15:29:20 CET [ BibTeX Download ] 387 views, 120 downloads, 1 subscription

About: Discovering short linear protein motif based on selective training of profile hidden Markov models

Changes:

Initial Announcement on mloss.org.


Logo Mr. 1.0

by SongTao - May 27, 2014, 15:20:40 CET [ BibTeX Download ] 303 views, 110 downloads, 1 subscription

About: Discovering short linear protein motif based on selective training of profile hidden Markov models

Changes:

Initial Announcement on mloss.org.


Logo Java deep neural networks with GPU 0.2.0-alpha

by hok - May 10, 2014, 14:22:30 CET [ Project Homepage BibTeX Download ] 946 views, 213 downloads, 2 subscriptions

About: GPU-accelerated java deep neural networks

Changes:

Initial Announcement on mloss.org.


Logo PredictionIO 0.7.0

by simonc - April 29, 2014, 20:59:57 CET [ Project Homepage BibTeX Download ] 5476 views, 1054 downloads, 2 subscriptions

About: Open Source Machine Learning Server

Changes:
  • Single machine version for small-to-medium scale deployments
  • Integrated GraphChi (disk-based large-scale graph computation) and algorithms: ALS, CCD++, SGD, CLiMF
  • Improved runtime for training and offline evaluation
  • Bug fixes

See release notes - https://predictionio.atlassian.net/secure/ReleaseNote.jspa?projectId=10000&version=11801


Logo RFD 1.0

by openpr_nlpr - April 28, 2014, 10:34:57 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 805 views, 181 downloads, 1 subscription

About: This is an unoptimized implementation of the RFD binary descriptor, which is published in the following paper. B. Fan, et al. Receptive Fields Selection for Binary Feature Description. IEEE Transaction on Image Processing, 2014. doi: http://dx.doi.org/10.1109/TIP.2014.2317981

Changes:

Initial Announcement on mloss.org.


About: RLLib is a lightweight C++ template library that implements incremental, standard, and gradient temporal-difference learning algorithms in Reinforcement Learning. It is an optimized library for robotic applications and embedded devices that operates under fast duty cycles (e.g., < 30 ms). RLLib has been tested and evaluated on RoboCup 3D soccer simulation agents, physical NAO V4 humanoid robots, and Tiva C series launchpad microcontrollers to predict, control, learn behaviors, and represent learnable knowledge. The implementation of the RLLib library is inspired by the RLPark API, which is a library of temporal-difference learning algorithms written in Java.

Changes:

Current release version is v2.0.


Logo WEKA 3.7.11

by mhall - April 24, 2014, 10:13:12 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 38985 views, 5642 downloads, 2 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 6 votes)

About: The Weka workbench contains a collection of visualization tools and algorithms for data analysis and predictive modelling, together with graphical user interfaces for easy access to this [...]

Changes:

In core weka:

  • Bagging and RandomForest are now faster if the base learner is a WeightedInstancesHandler
  • Speed-ups for REPTree and other classes that use entropy calculations
  • Many other code improvements and speed-ups
  • Additional statistics available in the output of LinearRegression and SimpleLinearRegression. Contributed by Chris Meyer
  • Reduced memory consumption in BayesNet
  • Improvements to the package manager: load status of individual packages can now be toggled to prevent a package from loading; "Available" button now displays the latest version of all available packages that are compatible with the base version of Weka
  • RandomizableFilteredClassifier
  • Canopy clusterer
  • ImageViewer KnowledgeFlow component
  • PMML export support for Logistic. Infrastructure and changes contributed by David Person
  • Extensive tool-tips now displayed in the Explorer's scheme selector tree lists
  • Join KnowledgeFlow component for performing an inner join on two incoming streams/data sets

In packages:

  • IWSSembeded package, contributed by Pablo Bermejo
  • CVAttributeEval package, contributed by Justin Liang
  • distributedWeka package for Hadoop
  • Improvements to multiLayerPerceptrons and addtion of MLPAutoencoder
  • Code clean-up in many packages

Logo libstb 1.8

by wbuntine - April 24, 2014, 09:02:17 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 4629 views, 902 downloads, 1 subscription

About: Generalised Stirling Numbers for Pitman-Yor Processes: this library provides ways of computing generalised 2nd-order Stirling numbers for Pitman-Yor and Dirichlet processes. Included is a tester and parameter optimiser. This accompanies Buntine and Hutter's article: http://arxiv.org/abs/1007.0296, and a series of papers by Buntine and students at NICTA and ANU.

Changes:

Moved repository to GitHub, and added thread support to use the main table lookups in multi-threaded code.


Logo GradMC 2.00

by tur - April 14, 2014, 15:48:48 CET [ BibTeX Download ] 1554 views, 534 downloads, 1 subscription

About: GradMC is an algorithm for MR motion artifact removal implemented in Matlab

Changes:

Added support for multi-rigid motion correction.


Logo MShadow 1.0

by antinucleon - April 10, 2014, 02:57:54 CET [ Project Homepage BibTeX Download ] 684 views, 182 downloads, 1 subscription

About: Lightweight CPU/GPU Matrix/Tensor Template Library in C++/CUDA. Support element-wise expression expand in high performance. Code once, run smoothly on both GPU and CPU

Changes:

Initial Announcement on mloss.org.


Logo CXXNET 0.1

by antinucleon - April 10, 2014, 02:47:08 CET [ Project Homepage BibTeX Download ] 766 views, 185 downloads, 1 subscription

About: CXXNET (spelled as: C plus plus net) is a neural network toolkit build on mshadow(https://github.com/tqchen/mshadow). It is yet another implementation of (convolutional) neural network. It is in C++, with about 1000 lines of network layer implementations, easily configuration via config file, and can get the state of art performance.

Changes:

Initial Announcement on mloss.org.


Logo JMLR Tapkee 1.0

by blackburn - April 10, 2014, 02:45:58 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 5612 views, 1590 downloads, 1 subscription

About: Tapkee is an efficient and flexible C++ template library for dimensionality reduction.

Changes:

Initial Announcement on mloss.org.


Logo JMLR MOA Massive Online Analysis Nov-13

by abifet - April 4, 2014, 03:50:20 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 11061 views, 4378 downloads, 1 subscription

About: Massive Online Analysis (MOA) is a real time analytic tool for data streams. It is a software environment for implementing algorithms and running experiments for online learning from evolving data streams. MOA includes a collection of offline and online methods as well as tools for evaluation. In particular, it implements boosting, bagging, and Hoeffding Trees, all with and without Naive Bayes classifiers at the leaves. MOA supports bi-directional interaction with WEKA, the Waikato Environment for Knowledge Analysis, and it is released under the GNU GPL license.

Changes:

New version November 2013


Logo JMLR MultiBoost 1.2.02

by busarobi - March 31, 2014, 16:13:04 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 22573 views, 4002 downloads, 1 subscription

About: MultiBoost is a multi-purpose boosting package implemented in C++. It is based on the multi-class/multi-task AdaBoost.MH algorithm [Schapire-Singer, 1999]. Basic base learners (stumps, trees, products, Haar filters for image processing) can be easily complemented by new data representations and the corresponding base learners, without interfering with the main boosting engine.

Changes:

Major changes :

  • The “early stopping” feature can now based on any metric output with the --outputinfo command line argument.

  • Early stopping now works with --slowresume command line argument.

Minor fixes:

  • More informative output when testing.

  • Various compilation glitch with recent clang (OsX/Linux).


Logo JMLR EnsembleSVM 2.0

by claesenm - March 31, 2014, 08:06:20 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 4737 views, 1667 downloads, 2 subscriptions

About: The EnsembleSVM library offers functionality to perform ensemble learning using Support Vector Machine (SVM) base models. In particular, we offer routines for binary ensemble models using SVM base classifiers. Experimental results have shown the predictive performance to be comparable with standard SVM models but with drastically reduced training time. Ensemble learning with SVM models is particularly useful for semi-supervised tasks.

Changes:

The library has been updated and features a variety of new functionality as well as more efficient implementations of original features. The following key improvements have been made:

  1. Support for multithreading in training and prediction with ensemble models. Since both of these are embarassingly parallel, this has induced a significant speedup (3-fold on quad-core).
  2. Extensive programming framework for aggregation of base model predictions which allows highly efficient prototyping of new aggregation approaches. Additionally we provide several predefined strategies, including (weighted) majority voting, logistic regression and nonlinear SVMs of your choice -- be sure to check out the esvm-edit tool! The provided framework also allows you to efficiently program your own, novel aggregation schemes.
  3. Full code transition to C++11, the latest C++ standard, which enabled various performance improvements. The new release requires moderately recent compilers, such as gcc 4.7.2+ or clang 3.2+.
  4. Generic implementations of convenient facilities have been added, such as thread pools, deserialization factories and more.

The API and ABI have undergone significant changes, many of which are due to the transition to C++11.


Logo Libra 1.0.1

by lowd - March 30, 2014, 09:42:00 CET [ Project Homepage BibTeX Download ] 9709 views, 2100 downloads, 1 subscription

About: The Libra Toolkit is a collection of algorithms for learning and inference with discrete probabilistic models, including Bayesian networks, Markov networks, dependency networks, sum-product networks, arithmetic circuits, and mixtures of trees.

Changes:

Version 1.0.1 (3/30/2014):

  • Several new algorithms -- acmn, learning ACs using MNs; idspn, SPN structure learning; mtlearn, learning mixtures of trees
  • Several new support programs -- spquery, for exact inference in SPNs; spn2ac, for converting SPNs to ACs
  • Renamed aclearnstruct to acbn
  • Replaced aclearnstruct -noac with separate bnlearn program
  • ...and many more small changes and fixes, throughout!

Showing Items 21-40 of 224 on page 2 of 12: Previous 1 2 3 4 5 6 7 Next Last