About: Somoclu is a massively parallel implementation of selforganizing maps. It relies on OpenMP for multicore execution, MPI for distributing the workload, and it can be accelerated by CUDA on a GPU cluster. A sparse kernel is also included, which is useful for training maps on vector spaces generated in text mining processes. Apart from a command line interface, Python, R, and MATLAB are supported. Changes:

About: Distributed optimization: Support Vector Machines and LASSO regression on distributed data Changes:Initial Upload

About: The fertilized forests project has the aim to provide an easy to use, easy to extend, yet fast library for decision forests. It summarizes the research in this field and provides a solid platform to extend it. Offering consistent interfaces to C++, Python and Matlab and being available for all major compilers gives the user high flexibility for using the library. Changes:Initial Announcement on mloss.org.

About: Hubnessaware Machine Learning for Highdimensional Data Changes:

About: xgboost: eXtreme Gradient Boosting It is an efficient and scalable implementation of gradient boosting framework. The package includes efficient linear model solver and tree learning algorithm. The package can automatically do parallel computation with OpenMP, and it can be more than 10 times faster than existing gradient boosting packages such as gbm or sklearn.GBM . It supports various objective functions, including regression, classification and ranking. The package is made to be extensible, so that user are also allowed to define there own objectives easily. The newest version of xgboost now supports distributed learning on various platforms such as hadoop, mpi and scales to even larger problems Changes:New features in the lastest changes

About: A template based C++ reinforcement learning library Changes:Initial Announcement on mloss.org.

About: C++ generic programming tools for machine learning Changes:Initial Announcement on mloss.org.

About: Libcmaes is a multithreaded C++11 library (with Python bindings) for high performance blackbox stochastic optimization of difficult, possibly nonlinear and nonconvex functions, using the CMAES algorithm for Covariance Matrix Adaptation Evolution Strategy. Libcmaes is useful to minimize / maximize any function, without information regarding gradient or derivability. Changes:Update works around clang bug (e.g. for OSX) and implements uncertainty handling scheme. Main changes:

About: Armadillo is a template C++ linear algebra library aiming towards a good balance between speed and ease of use, with a function syntax similar to MATLAB. Matrix decompositions are provided through optional integration with LAPACK, or one of its high performance dropin replacements (eg. Intel MKL, OpenBLAS). Changes:

About: Java package for calculating Entropy for Machine Learning Applications Changes:Initial Announcement on mloss.org.

About: This project is a C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real world problems. Changes:This release adds tools for computing 2D FFTs, Hough transforms, image skeletonizations, and also a simple and type safe API for calling C++ code from MATLAB.

About: The Weka workbench contains a collection of visualization tools and algorithms for data analysis and predictive modelling, together with graphical user interfaces for easy access to this [...] Changes:In core weka:
In packages:

About: The Accord.NET Framework is a .NET machine learning framework combined with audio and image processing libraries completely written in C#. It is a complete framework for building productiongrade computer vision, computer audition, signal processing and statistics applications even for commercial use. A comprehensive set of sample applications provide a fast start to get up and running quickly, and an extensive online documentation helps fill in the details. Changes:Adding a large number of new distributions, such as AndersonDaring, ShapiroWilk, Inverse ChiSquare, Lévy, Folded Normal, Shifted LogLogistic, Kumaraswamy, Trapezoidal, Uquadratic and BetaPrime distributions, BirnbaumSaunders, Generalized Normal, Gumbel, Power Lognormal, Power Normal, Triangular, Tukey Lambda, Logistic, Hyperbolic Secant, Degenerate and General Continuous distributions. Other additions include new statistical hypothesis tests such as AndersonDaring and ShapiroWilk; as well as support for all of LIBLINEAR's support vector machine algorithms; and format reading support for MATLAB/Octave matrices, LibSVM models, sparse LibSVM data files, and many others. For a complete list of changes, please see the full release notes at the release details page at: https://github.com/accordnet/framework/releases

About: a parallel LDA learning toolbox in MultiCore Systems for big topic modeling. Changes:Initial Announcement on mloss.org.

About: Gaussian processes with general nonlinear likelihoods using the unscented transform or Taylor series linearisation. Changes:Initial Announcement on mloss.org.

About: OpenNN is an open source class library written in C++ which implements neural networks. The library has been designed to learn from both data sets and mathematical models. Changes:Initial Announcement on mloss.org.

About: A Tool for Embedding Strings in Vector Spaces Changes:Fixed severe bug in concurrent computation of blended ngrams.

About: A Tool for Measuring String Similarity Changes:Several minor bugfixes.

About: LuaMapReduce framework implemented in Lua using luamongo driver and MongoDB as storage. It follows Iterative MapReduce for training of Machine Learning statistical models. Changes:

About: An extensible C++ library of Hierarchical Bayesian clustering algorithms, such as Bayesian Gaussian mixture models, variational Dirichlet processes, Gaussian latent Dirichlet allocation and more. Changes:Initial Announcement on mloss.org.
