20 projects found that use the bsd license.
Showing Items 21-40 of 72 on page 2 of 4: Previous 1 2 3 4 Next

Logo Cognitive Foundry 3.3.3

by Baz - May 21, 2013, 05:59:37 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 17206 views, 2740 downloads, 2 subscriptions

About: The Cognitive Foundry is a modular Java software library of machine learning components and algorithms designed for research and applications.

Changes:
  • General:
    • Made code able to compile under both Java 1.6 and 1.7. This required removing some potentially unsafe methods that used varargs with generics.
    • Upgraded XStream dependency to 1.4.4.
    • Improved support for regression algorithms in learning.
    • Added general-purpose adapters to make it easier to compose learning algorithms and adapt their input or output.
  • Common Core:
    • Added isSparse, toArray, dotDivide, and dotDivideEquals methods for Vector and Matrix.
    • Added scaledPlus, scaledPlusEquals, scaledMinus, and scaledMinusEquals to Ring (and thus Vector and Matrix) for potentially faster such operations.
    • Fixed issue where matrix and dense vector equals was not checking for equal dimensionality.
    • Added transform, transformEquals, tranformNonZeros, and transformNonZerosEquals to Vector.
    • Made LogNumber into a signed version of a log number and moved the prior unsigned implementation into UnsignedLogNumber.
    • Added EuclideanRing interface that provides methods for times, timesEquals, divide, and divideEquals. Also added Field interface that provides methods for inverse and inverseEquals. These interfaces are now implemented by the appropriate number classes such as ComplexNumber, MutableInteger, MutableLong, MutableDouble, LogNumber, and UnsignedLogNumber.
    • Added interface for Indexer and DefaultIndexer implementation for creating a zero-based indexing of values.
    • Added interfaces for MatrixFactoryContainer and DivergenceFunctionContainer.
    • Added ReversibleEvaluator, which various identity functions implement as well as a new utility class ForwardReverseEvaluatorPair to create a reversible evaluator from a pair of other evaluators.
    • Added method to create an ArrayList from a pair of values in CollectionUtil.
    • ArgumentChecker now properly throws assertion errors for NaN values. Also added checks for long types.
    • Fixed handling of Infinity in subtraction for LogMath.
    • Fixed issue with angle method that would cause a NaN if cosine had a rounding error.
    • Added new createMatrix methods to MatrixFactory that initializes the Matrix with the given value.
    • Added copy, reverse, and isEmpty methods for several array types to ArrayUtil.
    • Added utility methods for creating a HashMap, LinkedHashMap, HashSet, or LinkedHashSet with an expected size to CollectionUtil.
    • Added getFirst and getLast methods for List types to CollectionUtil.
    • Removed some calls to System.out and Exception.printStackTrace.
  • Common Data:
    • Added create method for IdentityDataConverter.
    • ReversibleDataConverter now is an extension of ReversibleEvaluator.
  • Learning Core:
    • Added general learner transformation capability to make it easier to adapt and compose algorithms. InputOutputTransformedBatchLearner provides this capability for supervised learning algorithms by composing together a triplet. CompositeBatchLearnerPair does it for a pair of algorithms.
    • Added a constant and identity learners.
    • Added Chebyshev, Identity, and Minkowski distance metrics.
    • Added methods to DatasetUtil to get the output values for a dataset and to compute the sum of weights.
    • Made generics more permissive for supervised cost functions.
    • Added ClusterDistanceEvaluator for taking a clustering that encodes the distance from an input value to all clusters and returns the result as a vector.
    • Fixed potential round-off issue in decision tree splitter.
    • Added random subspace technique, implemented in RandomSubspace.
    • Separated functionality from LinearFunction into IdentityScalarFunction. LinearFunction by default is the same, but has parameters that can change the slope and offset of the function.
    • Default squashing function for GeneralizedLinearModel and DifferentiableGeneralizedLinearModel is now a linear function instead of an atan function.
    • Added a weighted estimator for the Poisson distribution.
    • Added Regressor interface for evaluators that are the output of (single-output) regression learning algorithms. Existing such evaluators have been updated to implement this interface.
    • Added support for regression ensembles including additive and averaging ensembles with and without weights. Added a learner for regression bagging in BaggingRegressionLearner.
    • Added a simple univariate regression class in UnivariateLinearRegression.
    • MultivariateDecorrelator now is a VectorInputEvaluator and VectorOutputEvaluator.
    • Added bias term to PrimalEstimatedSubGradient.
  • Text Core:
    • Fixed issue with the start position for tokens from LetterNumberTokenizer being off by one except for the first one.

Logo HLearn 1.0

by mikeizbicki - May 9, 2013, 05:58:18 CET [ Project Homepage BibTeX Download ] 2998 views, 733 downloads, 1 subscription

About: HLearn makes simple machine learning routines available in Haskell by expressing them according to their algebraic structure

Changes:

Updated to version 1.0


Logo VLFeat 0.9.16

by andreavedaldi - October 5, 2012, 18:44:17 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 6774 views, 1246 downloads, 1 subscription

About: The VLFeat open source library implements popular computer vision algorithms including affine covariant feature detectors, HOG, SIFT, MSER, k-means, hierarchical k-means, agglomerative information bottleneck, SLIC superpixels, and quick shift. It is written in C for efficiency and compatibility, with interfaces in MATLAB for ease of use, and detailed documentation throughout. It supports Windows, Mac OS X, and Linux. The latest version of VLFeat is 0.9.16.

Changes:

VLFeat 0.9.16: Added VL_COVDET() (covariant feature detectors). This function implements the following detectors: DoG, Hessian, Harris Laplace, Hessian Laplace, Multiscale Hessian, Multiscale Harris. It also implements affine adaptation, estiamtion of feature orientation, computation of descriptors on the affine patches (including raw patches), and sourcing of custom feature frame. Addet the auxiliary function VL_PLOTSS(). This is the second point update supported by the PASCAL Harvest programme.

VLFeat 0.9.15: Added VL_HOG() (HOG features). Added VL_SVMPEGASOS() and a vastly improved SVM implementation. Added IHASHSUM (hashed counting). Improved INTHIST (integral histogram). Added VL_CUMMAX(). Improved the implementation of VL_ROC() and VL_PR(). Added VL_DET() (Detection Error Trade-off (DET) curves). Improved the verbosity control to AIB. Added support for Xcode 4.3, improved support for past and future Xcode versions. Completed the migration of the old test code in toolbox/test, moving the functionality to the new unit tests toolbox/xtest. Improved credits. This is the first point update supported by the PASCAL Harvest (several more to come shortly).


Logo MDP Modular toolkit for Data Processing 3.3

by otizonaizit - October 4, 2012, 15:17:33 CET [ Project Homepage BibTeX Download ] 17498 views, 4488 downloads, 1 subscription

Rating Whole StarWhole StarWhole StarWhole Star1/2 Star
(based on 3 votes)

About: MDP is a Python library of widely used data processing algorithms that can be combined according to a pipeline analogy to build more complex data processing software. The base of available algorithms includes signal processing methods (Principal Component Analysis, Independent Component Analysis, Slow Feature Analysis), manifold learning methods ([Hessian] Locally Linear Embedding), several classifiers, probabilistic methods (Factor Analysis, RBM), data pre-processing methods, and many others.

Changes:

What's new in version 3.3?

  • support sklearn versions up to 0.12
  • cleanly support reload
  • fail gracefully if pp server does not start
  • several bug-fixes and improvements

Logo Pattern 2.4

by tomdesmedt - August 31, 2012, 02:26:01 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 7121 views, 1880 downloads, 1 subscription

About: "Pattern" is a web mining module for Python. It bundles tools for data retrieval, text analysis, clustering and classification, and data visualization.

Changes:
  • Small bug fixes in overall + performance improvements.
  • Module pattern.web: updated to the new Bing API (Bing API has is paid service now).
  • Module pattern.en: now includes Norvig's spell checking algorithm.
  • Module pattern.de: new German tagger/chunker, courtesy of Schneider & Volk (1998) who kindly agreed to release their work in Pattern under BSD.
  • Module pattern.search: the search syntax now includes { } syntax to define match groups.
  • Module pattern.vector: fast implementation of information gain for feature selection.
  • Module pattern.graph: now includes a toy semantic network of commonsense (see examples).
  • Module canvas.js: image pixel effects & editor now supports live editing

Logo Threshold Image for Small object 1.0

by openpr_nlpr - July 23, 2012, 11:25:46 CET [ Project Homepage BibTeX Download ] 1646 views, 470 downloads, 1 subscription

About: Including source code of Threshold Method,SVM,Play Scan and Play detection.

Changes:

Initial Announcement on mloss.org.


Logo Uncorrelated Multilinear Discriminant Analysis 1.0

by hplu - July 7, 2012, 06:27:56 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 2918 views, 536 downloads, 1 subscription

About: A Matlab implementation of Uncorrelated Multilinear Discriminant Analysis (UMLDA) for dimensionality reduction of tensor data via tensor-to-vector projection

Changes:

Initial Announcement on mloss.org.


About: We study the problem of robust feature extraction based on L21 regularized correntropy in both theoretical and algorithmic manner. In theoretical part, we point out that an L21-norm minimization can be justified from the viewpoint of half-quadratic (HQ) optimization, which facilitates convergence study and algorithmic development. In particular, a general formulation is accordingly proposed to unify L1-norm and L21-norm minimization within a common framework. In algorithmic part, we propose an L21 regularized correntropy algorithm to extract informative features meanwhile to remove outliers from training data. A new alternate minimization algorithm is also developed to optimize the non-convex correntropy objective. In terms of face recognition, we apply the proposed method to obtain an appearance-based model, called Sparse-Fisherfaces. Extensive experiments show that our method can select robust and sparse features, and outperforms several state-of-the-art subspace methods on largescale and open face recognition datasets.

Changes:

Initial Announcement on mloss.org.


Logo Uncorrelated Multilinear Principal Component Analysis 1.0

by hplu - June 18, 2012, 17:23:52 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 2441 views, 480 downloads, 1 subscription

About: A Matlab implementation of Uncorrelated Multilinear PCA (UMPCA) for dimensionality reduction of tensor data via tensor-to-vector projection

Changes:

Initial Announcement on mloss.org.


Logo Action Recognition by Dense Trajectories 1.0

by openpr_nlpr - June 6, 2012, 11:38:07 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 3436 views, 652 downloads, 1 subscription

About: The code is for computing state-of-the-art video descriptors for action recognition. The most up-to-date information can be found at: http://lear.inrialpes.fr/people/wang/dense_trajectories

Changes:

Initial Announcement on mloss.org.


About: Ran He, Wei-Shi Zheng,Tieniu Tan, and Zhenan Sun. Half-quadratic based Iterative Minimization for Robust Sparse Representation. Submitted to IEEE Trans. on Pattern Analysis and Machine Intelligence.

Changes:

Initial Announcement on mloss.org.


About: This code is developed for incorporating a class of linear priors into the regression model.

Changes:

Initial Announcement on mloss.org.


Logo Multilinear Principal Component Analysis 1.2 1.2

by openpr_nlpr - April 16, 2012, 09:04:08 CET [ Project Homepage BibTeX Download ] 1902 views, 595 downloads, 1 subscription

About: This archive contains a Matlab implementation of the Multilinear Principal Component Analysis (MPCA) algorithm and MPCA+LDA, as described in the paper Haiping Lu, K.N. Plataniotis, and A.N. Venetsanopoulos, "MPCA: Multilinear Principal Component Analysis of Tensor Objects", IEEE Transactions on Neural Networks, Vol. 19, No. 1, Page: 18-39, January 2008.

Changes:

Initial Announcement on mloss.org.


Logo Thresholding program 1.0

by openpr_nlpr - March 1, 2012, 03:18:52 CET [ Project Homepage BibTeX Download ] 3729 views, 467 downloads, 1 subscription

About: This is demo program on global thresholding for image of bright small objects, such as aircrafts in airports. the program include four method, otsu,2D-Tsallis,PSSIM, Smoothnees Method.

Changes:

Initial Announcement on mloss.org.


Logo JMLR SSA Toolbox 1.3

by paulbuenau - January 24, 2012, 15:51:02 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 12635 views, 3848 downloads, 1 subscription

About: The SSA Toolbox is an efficient, platform-independent, standalone implementation of the Stationary Subspace Analysis algorithm with a friendly graphical user interface and a bridge to Matlab. Stationary Subspace Analysis (SSA) is a general purpose algorithm for the explorative analysis of non-stationary data, i.e. data whose statistical properties change over time. SSA helps to detect, investigate and visualize temporal changes in complex high-dimensional data sets.

Changes:
  • Various bugfixes.

Logo Efficient Nonnegative Sparse Coding Algorithm 1.0

by openpr_nlpr - January 4, 2012, 09:44:18 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 2190 views, 458 downloads, 1 subscription

About: Nonnegative Sparse Coding, Discriminative Semi-supervised Learning, sparse probability graph

Changes:

Initial Announcement on mloss.org.


About: In this paper, we propose an improved principal component analysis based on maximum entropy (MaxEnt) preservation, called MaxEnt-PCA, which is derived from a Parzen window estimation of Renyi’s quadratic entropy. Instead of minimizing the reconstruction error either based on L2-norm or L1-norm, the MaxEnt-PCA attempts to preserve as much as possible the uncertainty information of the data measured by entropy. The optimal solution of MaxEnt-PCA consists of the eigenvectors of a Laplacian probability matrix corresponding to the MaxEnt distribution. MaxEnt-PCA (1) is rotation invariant, (2) is free from any distribution assumption, and (3) is robust to outliers. Extensive experiments on real-world datasets demonstrate the effectiveness of the proposed linear method as compared to other related robust PCA methods.

Changes:

Initial Announcement on mloss.org.


Logo Metropolis Hastings algorithm 1.0.0

by openpr_nlpr - December 2, 2011, 05:43:20 CET [ Project Homepage BibTeX Download ] 1532 views, 392 downloads, 1 subscription

About: Metropolis-Hastings alogrithm is a Markov chain Monte Carlo method for obtaining a sequence of random samples from a probability distribution for which direct sampling is difficult. Thi sequence can be used to approximate the distribution.

Changes:

Initial Announcement on mloss.org.


About: This code is developed based on Uriel Roque's active set algorithm for the linear least squares problem with nonnegative variables in: Portugal, L.; Judice, J.; and Vicente, L. 1994. A comparison of block pivoting and interior-point algorithms for linear least squares problems with nonnegative variables. Mathematics of Computation 63(208):625-643.Ran He, Wei-Shi Zheng and Baogang Hu, "Maximum Correntropy Criterion for Robust Face Recognition," IEEE TPAMI, in press, 2011.

Changes:

Initial Announcement on mloss.org.


Logo Urheen 1.0.0

by openpr_nlpr - December 2, 2011, 05:40:08 CET [ Project Homepage BibTeX Download ] 1534 views, 407 downloads, 1 subscription

About: Urheen is a toolkit for Chinese word segmentation, Chinese pos tagging, English tokenize, and English pos tagging. The Chinese word segmentation and pos tagging modules are trained with the Chinese Tree Bank 7.0. The English pos tagging module is trained with the WSJ English treebank(02-23).

Changes:

Initial Announcement on mloss.org.


Showing Items 21-40 of 72 on page 2 of 4: Previous 1 2 3 4 Next