About: pyGPs is a Python package for Gaussian process (GP) regression and classification for machine learning. Changes:Changelog pyGPs v1.3October 19th 2014documentation updates:
structural updates:

About: A thin Python wrapper that uses the javabridge Python library to communicate with a Java Virtual Machine executing Weka API calls. Changes:

About: Scalable tensor factorization Changes:

About: BayesOpt is an efficient, C++ implementation of the Bayesian optimization methodology for nonlinearoptimization, experimental design and stochastic bandits. In the literature it is also called Sequential Kriging Optimization (SKO) or Efficient Global Optimization (EGO). There are also interfaces for C, Matlab/Octave and Python. Changes:Fixed bugs and doc typos

About: Libcmaes is a multithreaded C++11 library (with Python bindings) for high performance blackbox stochastic optimization of difficult, possibly nonlinear and nonconvex functions, using the CMAES algorithm for Covariance Matrix Adaptation Evolution Strategy. Libcmaes is useful to minimize / maximize any function, without information regarding gradient or derivability. Changes:Small release with two bug fixes and tiny changes otherwise:

About: Variational Bayesian inference tools for Python Changes:

About: Somoclu is a massively parallel implementation of selforganizing maps. It relies on OpenMP for multicore execution, MPI for distributing the workload, and it can be accelerated by CUDA on a GPU cluster. A sparse kernel is also included, which is useful for training maps on vector spaces generated in text mining processes. Changes:

About: xgboost: eXtreme Gradient Boosting It is an efficient and scalable implementation of gradient boosting framework. The package includes efficient linear model solver and tree learning algorithm. The package can automatically do parallel computation with OpenMP, and it can be more than 10 times faster than existing gradient boosting packages such as gbm or sklearn.GBM . It supports various objective functions, including regression, classification and ranking. The package is made to be extensible, so that user are also allowed to define there own objectives easily. Changes:New features:  R support that is now on CRAN

About: This project is a C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real world problems. Changes:In addition to a number of usability improvements, this release adds an implementation of the recent paper "One Millisecond Face Alignment with an Ensemble of Regression Trees" by Vahid Kazemi and Josephine Sullivan. This includes tools for performing high quality face landmarking as well as tools for training new landmarking models. See the face_landmark_detection_ex.cpp and train_shape_predictor_ex.cpp example programs for an introduction.

About: RLPy is a framework for performing reinforcement learning (RL) experiments in Python. RLPy provides a large library of agent and domain components, and a suite of tools to aid in experiments (parallelization, hyperparameter optimization, code profiling, and plotting). Changes:

About: Caffe aims to provide computer vision scientists with a clean, modifiable implementation of stateoftheart deep learning algorithms. We believe that Caffe is the fastest available GPU CNN implementation. Caffe also provides seamless switching between CPU and GPU, which allows one to train models with fast GPUs and then deploy them on nonGPU clusters. Even in CPU mode, computing predictions on an image takes only 20 ms (in batch mode). Changes:LOTS of stuff: https://github.com/BVLC/caffe/releases/tag/v0.9999

About: Optunity is a library containing various optimizers for hyperparameter tuning. Hyperparameter tuning is a recurrent problem in many machine learning tasks, both supervised and unsupervised.This package provides several distinct approaches to solve such problems including some helpful facilities such as crossvalidation and a plethora of score functions. Changes:Initial Announcement on mloss.org.

About: Crino: a neuralnetwork library based on Theano Changes:1.0.0 (7 july 2014) :  Initial release of crino  Implements a torchlike library to build artificial neural networks (ANN)  Provides standard implementations for : * autoencoders * multilayer perceptrons (MLP) * deep neural networks (DNN) * input output deep architecture (IODA)  Provides a batchgradient backpropagation algorithm, with adaptative learning rate

About: ARTOS can be used to quickly learn models for visual object detection without having to collect a set of samples manually. To make this possible, it uses ImageNet, a large image database with more than 20,000 categories. Changes:Initial Announcement on mloss.org.

About: PyStruct is a framework for learning structured prediction in Python. It has a modular interface, similar to the wellknown SVMstruct. Apart from learning algorithms it also contains model formulations for popular CRFs and interfaces to many inference algorithm implementation. Changes:Initial Announcement on mloss.org.

About: Universal Pythonwritten numerical optimization toolbox. Problems: NLP, LP, QP, NSP, MILP, LSP, LLSP, MMP, GLP, SLE, MOP etc; general logical constraints, categorical variables, automatic differentiation, stochastic programming, interval analysis, many other goodies Changes:http://openopt.org/Changelog

About: peewit provides services for programming, running and result examination of machine learning experiments. It does not include any ML algorithms, has no GUI, and presumes certain uniformity of the experimental layout. But it does not make assumptions on the type of task under study. The current versionnumber is 0.10. Changes:vcube with sidecubes

About: C++ software for statistical classification, probability estimation and interpolation/nonlinear regression using variable bandwidth kernel estimation. Changes:New in Version 0.9.7:

About: A Python library that allows you to define, optimize, and evaluate mathematical expressions involving multidimensional arrays efficiently. Dynamically generates CPU and GPU modules for good performance. Deep Learning Tutorials illustrate deep learning with Theano. Changes:Theano 0.6 (December 3th, 2013) Highlight:
0.6rc4 skipped for a technical reason. Highlights (since 0.6rc3):
Too much changes in 0.6rc1, 0.6rc2 and 0.6rc3 to list here. See https://github.com/Theano/Theano/blob/master/NEWS.txt for details.

About: Jubatus is a general framework library for online and distributed machine learning. It currently supports classification, regression, clustering, recommendation, nearest neighbors, anomaly detection, and graph analysis. Loose model sharing provides higher scalability, better performance, and realtime capabilities, by combining online learning with distributed computations. Changes:0.5.0 add new supports for clustering and nearest neighbors. For more detail, see http://t.co/flMcTcYZVs
