20 projects found that use c++ as the programming language.
Showing Items 1-20 of 188 on page 1 of 10: 1 2 3 4 5 6 Next Last

Logo JMLR dlib ml 18.17

by davis685 - August 16, 2015, 04:33:39 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 109878 views, 18474 downloads, 4 subscriptions

About: This project is a C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real world problems.

Changes:

This release adds new clustering tools as well as upgrades the shape_predictor to allow training on datasets with missing landmarks. It also includes bug fixes and minor usability improvements.


Logo OpenNN 2.2

by Sergiointelnics - August 10, 2015, 16:56:57 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 3060 views, 535 downloads, 3 subscriptions

About: OpenNN is an open source class library written in C++ programming language which implements neural networks, a main area of deep learning research. The library has been designed to learn from both data sets and mathematical models.

Changes:

New algorithms, correction of bugs.


Logo Armadillo library 5.300

by cu24gjf - August 7, 2015, 03:09:40 CET [ Project Homepage BibTeX Download ] 61667 views, 12610 downloads, 5 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 3 votes)

About: Armadillo is a template C++ linear algebra library aiming towards a good balance between speed and ease of use, with a function syntax similar to MATLAB. Matrix decompositions are provided through optional integration with LAPACK, or one of its high performance drop-in replacements (eg. Intel MKL, OpenBLAS).

Changes:
  • added generalised Schur decomposition: qz()
  • added .has_inf() and .has_nan()
  • expanded interp1() to handle out-of-domain locations
  • expanded sparse matrix class with .set_imag() and .set_real()
  • expanded imag(), real() and conj() to handle sparse matrices
  • expanded diagmat(), reshape() and resize() to handle sparse matrices
  • faster sparse sum()
  • faster row-wise sum(), mean(), min(), max()
  • updated physical constants to NIST 2014 CODATA values
  • fixes for handling sparse submatrix views

Logo libnabo 1.0.6

by smagnenat - August 5, 2015, 12:16:40 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 9056 views, 2064 downloads, 3 subscriptions

About: libnabo is a fast K Nearset Neighbor library for low-dimensional spaces.

Changes:
  • Reset point indices of results with distances exceeding threshold (#23, #24)
  • Fine tune the find_package() capability and add uninstall target (#22)
  • Fixed compiler warning (#18)
  • Added OpenMP support (#20, #21)
  • Build type tuning (#19)
  • Fix: terminal comma in enum requires C++11
  • Fix UBSAN error calculating maxNodeCount (#16, #17)
  • Fixed tiny (yet significant) error in the Python doc strings (#15)
  • Compile static lib with PIC (#14)
  • Added configure scripts for full catkinization
  • Catkinization of libnabo (following REP136)
  • Update README.md Added Simon as the maintainer.
  • [test] use CLOCK_PROF for NetBSD build
  • Fixed CppCheck warning. Fix broken install when doxygen is not found
  • Fix cmake stylistic issue
  • Make python install respect custom CMAKE_INSTALL_PREFIX
  • Fix broken install when doxygen is not found

Logo JMLR libDAI 0.3.2

by jorism - July 17, 2015, 15:59:55 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 41526 views, 7752 downloads, 4 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarWhole Star
(based on 1 vote)

About: libDAI provides free & open source implementations of various (approximate) inference methods for graphical models with discrete variables, including Bayesian networks and Markov Random Fields.

Changes:

Release 0.3.2 fixes various bugs and adds GLC (Generalized Loop Corrections) written by Siamak Ravanbakhsh.


Logo NaN toolbox 2.8.1

by schloegl - July 6, 2015, 22:43:23 CET [ Project Homepage BibTeX Download ] 36989 views, 7652 downloads, 3 subscriptions

About: NaN-toolbox is a statistics and machine learning toolbox for handling data with and without missing values.

Changes:

Changes in v.2.8.1 - number of bug fixes - compatibility issues with recent versions of Octave are addressed - upgrade to libsvm 3-12

For details see the CHANGELOG at http://pub.ist.ac.at/~schloegl/matlab/NaN/CHANGELOG


Logo Multiagent Decision Process Toolbox 0.3.1

by faoliehoek - June 4, 2015, 15:58:12 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 901 views, 247 downloads, 3 subscriptions

About: The Multiagent decision process (MADP) Toolbox is a free C++ software toolbox for scientific research in decision-theoretic planning and learning in multiagent systems.

Changes:

Initial Announcement on mloss.org.


Logo deepdetect 0.1

by beniz - June 2, 2015, 09:25:28 CET [ Project Homepage BibTeX Download ] 711 views, 198 downloads, 3 subscriptions

About: A Deep Learning API and server

Changes:

Initial Announcement on mloss.org.


Logo LMW Tree 1.0

by cdevries - May 30, 2015, 11:42:23 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 901 views, 172 downloads, 2 subscriptions

About: Learning M-Way Tree - Web Scale Clustering - EM-tree, K-tree, k-means, TSVQ, repeated k-means, clustering, random projections, random indexing, hashing, bit signatures

Changes:

Initial Announcement on mloss.org.


Logo Probabilistic Classification Vector Machine 0.21

by fmschleif - May 26, 2015, 16:24:17 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 1852 views, 440 downloads, 3 subscriptions

About: PCVM library a c++/armadillo implementation of the Probabilistic Classification Vector Machine.

Changes:

27.05.2015: - Matlab binding under Windows available. Added a solution file for VS'2013 express to compile a matlab mex binding. Can not yet confirm that under windows the code is really using multiple cores (under linux it does)


Logo KeBABS 1.2.3

by UBod - May 26, 2015, 10:55:44 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 5665 views, 988 downloads, 3 subscriptions

About: Kernel-Based Analysis of Biological Sequences

Changes:
  • new export kebabsCollectInfo for collection of package info
  • update of version dependency to Biostrings, XVector, S4Vector
  • correction for leading + or - in factor label
  • change of bibtex style sheet in vignette to plainnat.bst

Logo XGBoost v0.4.0

by crowwork - May 12, 2015, 08:57:16 CET [ Project Homepage BibTeX Download ] 8551 views, 1682 downloads, 3 subscriptions

About: xgboost: eXtreme Gradient Boosting It is an efficient and scalable implementation of gradient boosting framework. The package includes efficient linear model solver and tree learning algorithm. The package can automatically do parallel computation with OpenMP, and it can be more than 10 times faster than existing gradient boosting packages such as gbm or sklearn.GBM . It supports various objective functions, including regression, classification and ranking. The package is made to be extensible, so that user are also allowed to define there own objectives easily. The newest version of xgboost now supports distributed learning on various platforms such as hadoop, mpi and scales to even larger problems

Changes:
  • Distributed version of xgboost that runs on YARN, scales to billions of examples

  • Direct save/load data and model from/to S3 and HDFS

  • Feature importance visualization in R module, by Michael Benesty

  • Predict leaf index

  • Poisson regression for counts data

  • Early stopping option in training

  • Native save load support in R and python

  • xgboost models now can be saved using save/load in R

  • xgboost python model is now pickable

  • sklearn wrapper is supported in python module

  • Experimental External memory version


Logo MIPS, The migrant implementation system 1.0

by thomasfannes - April 28, 2015, 15:07:05 CET [ Project Homepage BibTeX Download ] 873 views, 255 downloads, 3 subscriptions

About: MIPS is a software library for state-of-the-art graph mining algorithms. The library is platform independent, written in C++(03), and aims at implementing generic and efficient graph mining algorithms.

Changes:

description update


Logo Loom 0.2.10

by fritzo - March 19, 2015, 19:22:03 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 1015 views, 223 downloads, 2 subscriptions

About: A streaming inference and query engine for the Cross-Categorization model of tabular data.

Changes:

Initial Announcement on mloss.org.


Logo libcmaes 0.9.5

by beniz - March 9, 2015, 09:05:22 CET [ Project Homepage BibTeX Download ] 5959 views, 1235 downloads, 3 subscriptions

About: Libcmaes is a multithreaded C++11 library (with Python bindings) for high performance blackbox stochastic optimization of difficult, possibly non-linear and non-convex functions, using the CMA-ES algorithm for Covariance Matrix Adaptation Evolution Strategy. Libcmaes is useful to minimize / maximize any function, without information regarding gradient or derivability.

Changes:

This is a major release, with several novelties, improvements and fixes, among which:

  • step-size two-point adaptaion scheme for improved performances in some settings, ref #88

  • important bug fixes to the ACM surrogate scheme, ref #57, #106

  • simple high-level workflow under Python, ref #116

  • improved performances in high dimensions, ref #97

  • improved profile likelihood and contour computations, including under geno/pheno transforms, ref #30, #31, #48

  • elitist mechanism for forcing best solutions during evolution, ref 103

  • new legacy plotting function, ref #110

  • optional initial function value, ref #100

  • improved C++ API, ref #89

  • Python bindings support with Anaconda, ref #111

  • configure script now tries to detect numpy when building Python bindings, ref #113

  • Python bindings now have embedded documentation, ref #114

  • support for Travis continuous integration, ref #122

  • lower resolution random seed initialization


Logo CN24 Convolutional Neural Networks for Semantic Segmentation 1.0

by erik - February 23, 2015, 09:02:06 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 1328 views, 270 downloads, 1 subscription

About: CN24 is a complete semantic segmentation framework using fully convolutional networks.

Changes:

Initial Announcement on mloss.org.


Logo Histogram of Oriented Gradient 1.0

by openpr_nlpr - February 10, 2015, 08:27:55 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 1015 views, 200 downloads, 2 subscriptions

About: This is an exact implementation of Histogram of Oriented Gradient as mentioned in the paper by Dalal.

Changes:

Initial Announcement on mloss.org.


Logo JMLR SHOGUN 4.0.0

by sonne - February 5, 2015, 09:09:37 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 97481 views, 13775 downloads, 6 subscriptions

Rating Whole StarWhole StarWhole StarEmpty StarEmpty Star
(based on 6 votes)

About: The SHOGUN machine learning toolbox's focus is on large scale learning methods with focus on Support Vector Machines (SVM), providing interfaces to python, octave, matlab, r and the command line.

Changes:

This release features the work of our 8 GSoC 2014 students [student; mentors]:

  • OpenCV Integration and Computer Vision Applications [Abhijeet Kislay; Kevin Hughes]
  • Large-Scale Multi-Label Classification [Abinash Panda; Thoralf Klein]
  • Large-scale structured prediction with approximate inference [Jiaolong Xu; Shell Hu]
  • Essential Deep Learning Modules [Khaled Nasr; Sergey Lisitsyn, Theofanis Karaletsos]
  • Fundamental Machine Learning: decision trees, kernel density estimation [Parijat Mazumdar ; Fernando Iglesias]
  • Shogun Missionary & Shogun in Education [Saurabh Mahindre; Heiko Strathmann]
  • Testing and Measuring Variable Interactions With Kernels [Soumyajit De; Dino Sejdinovic, Heiko Strathmann]
  • Variational Learning for Gaussian Processes [Wu Lin; Heiko Strathmann, Emtiyaz Khan]

It also contains several cleanups and bugfixes:

Features

  • New Shogun project description [Heiko Strathmann]
  • ID3 algorithm for decision tree learning [Parijat Mazumdar]
  • New modes for PCA matrix factorizations: SVD & EVD, in-place or reallocating [Parijat Mazumdar]
  • Add Neural Networks with linear, logistic and softmax neurons [Khaled Nasr]
  • Add kernel multiclass strategy examples in multiclass notebook [Saurabh Mahindre]
  • Add decision trees notebook containing examples for ID3 algorithm [Parijat Mazumdar]
  • Add sudoku recognizer ipython notebook [Alejandro Hernandez]
  • Add in-place subsets on features, labels, and custom kernels [Heiko Strathmann]
  • Add Principal Component Analysis notebook [Abhijeet Kislay]
  • Add Multiple Kernel Learning notebook [Saurabh Mahindre]
  • Add Multi-Label classes to enable Multi-Label classification [Thoralf Klein]
  • Add rectified linear neurons, dropout and max-norm regularization to neural networks [Khaled Nasr]
  • Add C4.5 algorithm for multiclass classification using decision trees [Parijat Mazumdar]
  • Add support for arbitrary acyclic graph-structured neural networks [Khaled Nasr]
  • Add CART algorithm for classification and regression using decision trees [Parijat Mazumdar]
  • Add CHAID algorithm for multiclass classification and regression using decision trees [Parijat Mazumdar]
  • Add Convolutional Neural Networks [Khaled Nasr]
  • Add Random Forests algorithm for ensemble learning using CART [Parijat Mazumdar]
  • Add Restricted Botlzmann Machines [Khaled Nasr]
  • Add Stochastic Gradient Boosting algorithm for ensemble learning [Parijat Mazumdar]
  • Add Deep contractive and denoising autoencoders [Khaled Nasr]
  • Add Deep belief networks [Khaled Nasr]

Bugfixes

  • Fix reference counting bugs in CList when reference counting is on [Heiko Strathmann, Thoralf Klein, lambday]
  • Fix memory problem in PCA::apply_to_feature_matrix [Parijat Mazumdar]
  • Fix crash in LeastAngleRegression for the case D greater than N [Parijat Mazumdar]
  • Fix memory violations in bundle method solvers [Thoralf Klein]
  • Fix fail in library_mldatahdf5.cpp example when http://mldata.org is not working properly [Parijat Mazumdar]
  • Fix memory leaks in Vowpal Wabbit, LibSVMFile and KernelPCA [Thoralf Klein]
  • Fix memory and control flow issues discovered by Coverity [Thoralf Klein]
  • Fix R modular interface SWIG typemap (Requires SWIG >= 2.0.5) [Matt Huska]

Cleanup and API Changes

  • PCA now depends on Eigen3 instead of LAPACK [Parijat Mazumdar]
  • Removing redundant and fixing implicit imports [Thoralf Klein]
  • Hide many methods from SWIG, reducing compile memory by 500MiB [Heiko Strathmann, Fernando Iglesias, Thoralf Klein]

Logo Somoclu 1.4.1

by peterwittek - January 28, 2015, 13:19:36 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 8185 views, 1621 downloads, 2 subscriptions

About: Somoclu is a massively parallel implementation of self-organizing maps. It relies on OpenMP for multicore execution, MPI for distributing the workload, and it can be accelerated by CUDA on a GPU cluster. A sparse kernel is also included, which is useful for training maps on vector spaces generated in text mining processes. Apart from a command line interface, Python, R, and MATLAB are supported.

Changes:
  • Better support for ICC.
  • Faster code when compiling with GCC.
  • Building instructions and documentation improved.
  • Bug fixes: portability for R, using native R random number generator.

Logo Distributed Frank Wolfe Algorithm 0.02

by alirezabagheri - January 28, 2015, 00:35:03 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 1129 views, 329 downloads, 2 subscriptions

About: Distributed optimization: Support Vector Machines and LASSO regression on distributed data

Changes:

Initial Upload


Showing Items 1-20 of 188 on page 1 of 10: 1 2 3 4 5 6 Next Last