20 projects found that use c++ as the programming language.
Showing Items 1-20 of 183 on page 1 of 10: 1 2 3 4 5 6 Next Last

Logo Loom 0.2.10

by fritzo - March 19, 2015, 19:22:03 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 238 views, 35 downloads, 1 subscription

About: A streaming inference and query engine for the Cross-Categorization model of tabular data.

Changes:

Initial Announcement on mloss.org.


Logo XGBoost v0.3.95

by crowwork - March 9, 2015, 23:17:29 CET [ Project Homepage BibTeX Download ] 4808 views, 967 downloads, 3 subscriptions

About: xgboost: eXtreme Gradient Boosting It is an efficient and scalable implementation of gradient boosting framework. The package includes efficient linear model solver and tree learning algorithm. The package can automatically do parallel computation with OpenMP, and it can be more than 10 times faster than existing gradient boosting packages such as gbm or sklearn.GBM . It supports various objective functions, including regression, classification and ranking. The package is made to be extensible, so that user are also allowed to define there own objectives easily. The newest version of xgboost now supports distributed learning on various platforms such as hadoop, mpi and scales to even larger problems

Changes:

New features in the lastest changes

  • Distributed version now runs on Hadoop YARN

Logo libcmaes 0.9.5

by beniz - March 9, 2015, 09:05:22 CET [ Project Homepage BibTeX Download ] 4183 views, 870 downloads, 3 subscriptions

About: Libcmaes is a multithreaded C++11 library (with Python bindings) for high performance blackbox stochastic optimization of difficult, possibly non-linear and non-convex functions, using the CMA-ES algorithm for Covariance Matrix Adaptation Evolution Strategy. Libcmaes is useful to minimize / maximize any function, without information regarding gradient or derivability.

Changes:

This is a major release, with several novelties, improvements and fixes, among which:

  • step-size two-point adaptaion scheme for improved performances in some settings, ref #88

  • important bug fixes to the ACM surrogate scheme, ref #57, #106

  • simple high-level workflow under Python, ref #116

  • improved performances in high dimensions, ref #97

  • improved profile likelihood and contour computations, including under geno/pheno transforms, ref #30, #31, #48

  • elitist mechanism for forcing best solutions during evolution, ref 103

  • new legacy plotting function, ref #110

  • optional initial function value, ref #100

  • improved C++ API, ref #89

  • Python bindings support with Anaconda, ref #111

  • configure script now tries to detect numpy when building Python bindings, ref #113

  • Python bindings now have embedded documentation, ref #114

  • support for Travis continuous integration, ref #122

  • lower resolution random seed initialization


Logo KeBABS 1.0.5

by UBod - March 4, 2015, 22:34:11 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 2533 views, 432 downloads, 3 subscriptions

About: Kernel-Based Analysis of Biological Sequences

Changes:
  • new accessors selGridRow, selGridCol and fullModel for class ModelSelectionResult
  • change of naming of feature weights because of change in LiblineaR 1.94-2
  • GCC warnings in Linux removed

Logo JMLR dlib ml 18.14

by davis685 - March 1, 2015, 23:51:06 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 94392 views, 16422 downloads, 3 subscriptions

About: This project is a C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real world problems.

Changes:

This release adds an implementation of spectral clustering as well as a few bug fixes and usability improvements.


Logo Armadillo library 4.650

by cu24gjf - February 25, 2015, 05:11:06 CET [ Project Homepage BibTeX Download ] 52083 views, 11138 downloads, 4 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 2 votes)

About: Armadillo is a template C++ linear algebra library aiming towards a good balance between speed and ease of use, with a function syntax similar to MATLAB. Matrix decompositions are provided through optional integration with LAPACK, or one of its high performance drop-in replacements (eg. Intel MKL, OpenBLAS).

Changes:
  • added .head_rows() and .tail_rows() to submatrix views
  • added .head_cols() and .tail_cols() to submatrix views
  • added randg() for generating random values from gamma distributions
  • expanded eigs_sym() to optionally calculate eigenvalues with smallest/largest algebraic values
  • fixes for handling of sparse matrices

Logo CN24 Convolutional Neural Networks for Semantic Segmentation 1.0

by erik - February 23, 2015, 09:02:06 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 570 views, 75 downloads, 1 subscription

About: CN24 is a complete semantic segmentation framework using fully convolutional networks.

Changes:

Initial Announcement on mloss.org.


Logo Histogram of Oriented Gradient 1.0

by openpr_nlpr - February 10, 2015, 08:27:55 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 423 views, 78 downloads, 2 subscriptions

About: This is an exact implementation of Histogram of Oriented Gradient as mentioned in the paper by Dalal.

Changes:

Initial Announcement on mloss.org.


Logo JMLR SHOGUN 4.0.0

by sonne - February 5, 2015, 09:09:37 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 91128 views, 12717 downloads, 6 subscriptions

Rating Whole StarWhole StarWhole StarEmpty StarEmpty Star
(based on 6 votes)

About: The SHOGUN machine learning toolbox's focus is on large scale learning methods with focus on Support Vector Machines (SVM), providing interfaces to python, octave, matlab, r and the command line.

Changes:

This release features the work of our 8 GSoC 2014 students [student; mentors]:

  • OpenCV Integration and Computer Vision Applications [Abhijeet Kislay; Kevin Hughes]
  • Large-Scale Multi-Label Classification [Abinash Panda; Thoralf Klein]
  • Large-scale structured prediction with approximate inference [Jiaolong Xu; Shell Hu]
  • Essential Deep Learning Modules [Khaled Nasr; Sergey Lisitsyn, Theofanis Karaletsos]
  • Fundamental Machine Learning: decision trees, kernel density estimation [Parijat Mazumdar ; Fernando Iglesias]
  • Shogun Missionary & Shogun in Education [Saurabh Mahindre; Heiko Strathmann]
  • Testing and Measuring Variable Interactions With Kernels [Soumyajit De; Dino Sejdinovic, Heiko Strathmann]
  • Variational Learning for Gaussian Processes [Wu Lin; Heiko Strathmann, Emtiyaz Khan]

It also contains several cleanups and bugfixes:

Features

  • New Shogun project description [Heiko Strathmann]
  • ID3 algorithm for decision tree learning [Parijat Mazumdar]
  • New modes for PCA matrix factorizations: SVD & EVD, in-place or reallocating [Parijat Mazumdar]
  • Add Neural Networks with linear, logistic and softmax neurons [Khaled Nasr]
  • Add kernel multiclass strategy examples in multiclass notebook [Saurabh Mahindre]
  • Add decision trees notebook containing examples for ID3 algorithm [Parijat Mazumdar]
  • Add sudoku recognizer ipython notebook [Alejandro Hernandez]
  • Add in-place subsets on features, labels, and custom kernels [Heiko Strathmann]
  • Add Principal Component Analysis notebook [Abhijeet Kislay]
  • Add Multiple Kernel Learning notebook [Saurabh Mahindre]
  • Add Multi-Label classes to enable Multi-Label classification [Thoralf Klein]
  • Add rectified linear neurons, dropout and max-norm regularization to neural networks [Khaled Nasr]
  • Add C4.5 algorithm for multiclass classification using decision trees [Parijat Mazumdar]
  • Add support for arbitrary acyclic graph-structured neural networks [Khaled Nasr]
  • Add CART algorithm for classification and regression using decision trees [Parijat Mazumdar]
  • Add CHAID algorithm for multiclass classification and regression using decision trees [Parijat Mazumdar]
  • Add Convolutional Neural Networks [Khaled Nasr]
  • Add Random Forests algorithm for ensemble learning using CART [Parijat Mazumdar]
  • Add Restricted Botlzmann Machines [Khaled Nasr]
  • Add Stochastic Gradient Boosting algorithm for ensemble learning [Parijat Mazumdar]
  • Add Deep contractive and denoising autoencoders [Khaled Nasr]
  • Add Deep belief networks [Khaled Nasr]

Bugfixes

  • Fix reference counting bugs in CList when reference counting is on [Heiko Strathmann, Thoralf Klein, lambday]
  • Fix memory problem in PCA::apply_to_feature_matrix [Parijat Mazumdar]
  • Fix crash in LeastAngleRegression for the case D greater than N [Parijat Mazumdar]
  • Fix memory violations in bundle method solvers [Thoralf Klein]
  • Fix fail in library_mldatahdf5.cpp example when http://mldata.org is not working properly [Parijat Mazumdar]
  • Fix memory leaks in Vowpal Wabbit, LibSVMFile and KernelPCA [Thoralf Klein]
  • Fix memory and control flow issues discovered by Coverity [Thoralf Klein]
  • Fix R modular interface SWIG typemap (Requires SWIG >= 2.0.5) [Matt Huska]

Cleanup and API Changes

  • PCA now depends on Eigen3 instead of LAPACK [Parijat Mazumdar]
  • Removing redundant and fixing implicit imports [Thoralf Klein]
  • Hide many methods from SWIG, reducing compile memory by 500MiB [Heiko Strathmann, Fernando Iglesias, Thoralf Klein]

Logo NaN toolbox 2.7.1

by schloegl - February 3, 2015, 19:03:36 CET [ Project Homepage BibTeX Download ] 32644 views, 6665 downloads, 2 subscriptions

About: NaN-toolbox is a statistics and machine learning toolbox for handling data with and without missing values.

Changes:

Changes in v.2.7.1 - API compatibility of mahal, zscore, - improve support for cygwin, macosx/homebrew - a number of minor improvements

For details see the CHANGELOG at http://pub.ist.ac.at/~schloegl/matlab/NaN/CHANGELOG


Logo Somoclu 1.4.1

by peterwittek - January 28, 2015, 13:19:36 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 6349 views, 1220 downloads, 2 subscriptions

About: Somoclu is a massively parallel implementation of self-organizing maps. It relies on OpenMP for multicore execution, MPI for distributing the workload, and it can be accelerated by CUDA on a GPU cluster. A sparse kernel is also included, which is useful for training maps on vector spaces generated in text mining processes. Apart from a command line interface, Python, R, and MATLAB are supported.

Changes:
  • Better support for ICC.
  • Faster code when compiling with GCC.
  • Building instructions and documentation improved.
  • Bug fixes: portability for R, using native R random number generator.

Logo Distributed Frank Wolfe Algorithm 0.02

by alirezabagheri - January 28, 2015, 00:35:03 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 545 views, 121 downloads, 2 subscriptions

About: Distributed optimization: Support Vector Machines and LASSO regression on distributed data

Changes:

Initial Upload


Logo fertilized forests 1.0beta

by Chrisl_S - January 23, 2015, 16:04:31 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 525 views, 89 downloads, 1 subscription

About: The fertilized forests project has the aim to provide an easy to use, easy to extend, yet fast library for decision forests. It summarizes the research in this field and provides a solid platform to extend it. Offering consistent interfaces to C++, Python and Matlab and being available for all major compilers gives the user high flexibility for using the library.

Changes:

Initial Announcement on mloss.org.


Logo Rabit 0.1.0

by crowwork - January 21, 2015, 18:48:46 CET [ Project Homepage BibTeX Download ] 371 views, 94 downloads, 1 subscription

About: rabit (Reliable Allreduce and Broadcast Interface) is a light weight library that provides a fault tolerant interface of Allreduce and Broadcast for portable , scalable and reliable distributed machine learning programs. Rabit programs can run on various platforms such as Hadoop, MPI and no installation is needed. Rabit now support kmeans clustering, and distributed xgboost: an extremely efficient disrtibuted boosted tree(GBDT) toolkit.

Changes:

Initial Announcement on mloss.org.


Logo JMLR RL library 3.00.00

by frezza - January 13, 2015, 04:15:16 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 809 views, 158 downloads, 2 subscriptions

About: A template based C++ reinforcement learning library

Changes:

Initial Announcement on mloss.org.


Logo gaml 1.10

by frezza - January 8, 2015, 14:06:58 CET [ Project Homepage BibTeX Download ] 508 views, 120 downloads, 2 subscriptions

About: C++ generic programming tools for machine learning

Changes:

Initial Announcement on mloss.org.


Logo JMLR MLPACK 1.0.12

by rcurtin - January 7, 2015, 19:23:51 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 39421 views, 7677 downloads, 6 subscriptions

Rating Whole StarWhole StarWhole StarWhole Star1/2 Star
(based on 1 vote)

About: A scalable, fast C++ machine learning library, with emphasis on usability.

Changes:
  • Switch to 3-clause BSD license.

Logo APCluster 1.4.1

by UBod - December 10, 2014, 12:58:29 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 20436 views, 3720 downloads, 3 subscriptions

Rating Whole StarWhole StarWhole StarWhole Star1/2 Star
(based on 2 votes)

About: The apcluster package implements Frey's and Dueck's Affinity Propagation clustering in R. The package further provides leveraged affinity propagation, exemplar-based agglomerative clustering, and various tools for visual analysis of clustering results.

Changes:
  • fixes in C++ code of sparse affinity propagation

Logo libAGF 0.9.8

by Petey - December 6, 2014, 02:35:39 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 10166 views, 2023 downloads, 2 subscriptions

About: C++ software for statistical classification, probability estimation and interpolation/non-linear regression using variable bandwidth kernel estimation.

Changes:

New in Version 0.9.8:

  • bug fixes: svm file conversion works properly and is more general

  • non-hierarchical multi-borders has 3 options for solving for the conditional probabilities: matrix inversion, voting, and matrix inversion over-ridden by voting, with re-normalization

  • multi-borders now works with external binary classifiers

  • random numbers resolve a tie when selecting classes based on probabilities

  • pair of routines, sort_discrete_vectors and search_discrete_vectors, for classification based on n-d binning (still experimental)

  • command options have been changed with many new additions, see QUICKSTART file or run the relevant commands for details


Logo The Statistical ToolKit 0.8.4

by joblion - December 5, 2014, 13:21:47 CET [ Project Homepage BibTeX Download ] 1034 views, 403 downloads, 2 subscriptions

About: STK++: A Statistical Toolkit Framework in C++

Changes:

Inegrating openmp to the current release. Many enhancement in the clustering project. bug fix


Showing Items 1-20 of 183 on page 1 of 10: 1 2 3 4 5 6 Next Last