Showing Items 511520 of 619 on page 52 of 62: First Previous 47 48 49 50 51 52 53 54 55 56 57 Next Last
About: "Ordinal Choquistic Regression" model using the maximum likelihood Changes:Initial Announcement on mloss.org.

About: It's a C++ program for symmetric matrix diagonalization, inversion and principal component anlaysis(PCA). The matrix diagonalization function can also be applied to the computation of singular value decomposition (SVD), Fisher linear discriminant analysis (FLDA) and kernel PCA (KPCA) if forming the symmetric matrix appropriately. Changes:Initial Announcement on mloss.org.

About: Urheen is a toolkit for Chinese word segmentation, Chinese pos tagging, English tokenize, and English pos tagging. The Chinese word segmentation and pos tagging modules are trained with the Chinese Tree Bank 7.0. The English pos tagging module is trained with the WSJ English treebank(0223). Changes:Initial Announcement on mloss.org.

About: AIDE (Automata Identification Engine) is a free open source tool for automata inference algorithms developed in C# .Net. Changes:Initial Announcement on mloss.org.

About: A library for calculating and accessing generalized Stirling numbers of the second kind, which are used for inference in PoissonDirichlet processes. Changes:Initial Announcement on mloss.org.

About: DRVQ is a C++ library implementation of dimensionalityrecursive vector quantization, a fast vector quantization method in highdimensional Euclidean spaces under arbitrary data distributions. It is an approximation of kmeans that is practically constant in data size and applies to arbitrarily high dimensions but can only scale to a few thousands of centroids. As a byproduct of training, a tree structure performs either exact or approximate quantization on trained centroids, the latter being not very precise but extremely fast. Changes:Initial Announcement on mloss.org.

About: Loglinear analysis for highdimensional data Changes:Initial Announcement on mloss.org.

About: MetropolisHastings alogrithm is a Markov chain Monte Carlo method for obtaining a sequence of random samples from a probability distribution for which direct sampling is difficult. Thi sequence can be used to approximate the distribution. Changes:Initial Announcement on mloss.org.

About: ARTOS can be used to quickly learn models for visual object detection without having to collect a set of samples manually. To make this possible, it uses ImageNet, a large image database with more than 20,000 categories. Changes:Initial Announcement on mloss.org.

About: Bayesian Model Averaging for linear models with a wide choice of (customizable) priors. Builtin priorss include coefficient priors (fixed, flexible and hyperg priors), 5 kinds of model priors, moreover model sampling by enumeration or various MCMC approaches. Changes:Initial Announcement on mloss.org.
