All entries.
Showing Items 41-50 of 540 on page 5 of 54: Previous 1 2 3 4 5 6 7 8 9 10 Next Last

Logo FEAST 1.1.1

by apocock - June 30, 2014, 01:30:23 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 15832 views, 3639 downloads, 1 subscription

Rating Whole StarWhole StarWhole StarWhole StarWhole Star
(based on 1 vote)

About: FEAST provides implementations of common mutual information based filter feature selection algorithms (mim, mifs, mrmr, cmim, icap, jmi, disr, fcbf, etc), and an implementation of RELIEF. Written for C/C++ & Matlab.

Changes:
  • Bug fixes to memory management.
  • Compatibility changes for PyFeast python wrapper (note the C library now returns feature indices starting from 0, the Matlab wrapper still returns indices starting from 1).
  • Added C version of MIM.
  • Updated internal version of MIToolbox.

Logo JMLR DLLearner Build 2010-08-07

by Jens - August 8, 2010, 10:43:50 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 14184 views, 3620 downloads, 4 subscriptions

Rating Whole StarWhole StarWhole StarWhole Star1/2 Star
(based on 3 votes)

About: The DL-Learner framework contains several algorithms for supervised concept learning in Description Logics (DLs) and OWL.

Changes:

See http://dl-learner.org/wiki/ChangeLog.


Logo BRML toolbox 070711

by DavidBarber - July 17, 2011, 19:30:15 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 58126 views, 3612 downloads, 1 subscription

About: Bayesian Reasoning and Machine Learning toolbox

Changes:

Fixed some small bugs and updated some demos.


Logo JMLR GPstuff 4.5

by avehtari - July 22, 2014, 14:03:11 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 14102 views, 3510 downloads, 2 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarWhole Star
(based on 1 vote)

About: The GPstuff toolbox is a versatile collection of Gaussian process models and computational tools required for inference. The tools include, among others, various inference methods, sparse approximations and model assessment methods.

Changes:

2014-07-22 Version 4.5

New features

  • Input dependent noise and signal variance.

    • Tolvanen, V., Jylänki, P. and Vehtari, A. (2014). Expectation Propagation for Nonstationary Heteroscedastic Gaussian Process Regression. In Proceedings of IEEE International Workshop on Machine Learning for Signal Processing, accepted for publication. Preprint http://arxiv.org/abs/1404.5443
  • Sparse stochastic variational inference model.

    • Hensman, J., Fusi, N. and Lawrence, N. D. (2013). Gaussian processes for big data. arXiv preprint http://arxiv.org/abs/1309.6835.
  • Option 'autoscale' in the gp_rnd.m to get split normal approximated samples from the posterior predictive distribution of the latent variable.

    • Geweke, J. (1989). Bayesian Inference in Econometric Models Using Monte Carlo Integration. Econometrica, 57(6):1317-1339.

    • Villani, M. and Larsson, R. (2006). The Multivariate Split Normal Distribution and Asymmetric Principal Components Analysis. Communications in Statistics - Theory and Methods, 35(6):1123-1140.

Improvements

  • New unit test environment using the Matlab built-in test framework (the old Xunit package is still also supported).
  • Precomputed demo results (including the figures) are now available in the folder tests/realValues.
  • New demos demonstrating new features etc.
    • demo_epinf, demonstrating the input dependent noise and signal variance model
    • demo_svi_regression, demo_svi_classification
    • demo_modelcomparison2, demo_survival_comparison

Several minor bugfixes


Logo JMLR Surrogate Modeling Toolbox 7.0.2

by dgorissen - September 4, 2010, 07:48:59 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 11734 views, 3458 downloads, 1 subscription

About: The SUMO Toolbox is a Matlab toolbox that automatically builds accurate surrogate models (also known as metamodels or response surface models) of a given data source (e.g., simulation code, data set, script, ...) within the accuracy and time constraints set by the user. The toolbox minimizes the number of data points (which it selects automatically) since they are usually expensive.

Changes:

Incremental update, fixing some cosmetic issues, coincides with JMLR publication.


Logo r-cran-CoxBoost 1.4

by r-cran-robot - October 1, 2014, 00:00:04 CET [ Project Homepage BibTeX Download ] 17037 views, 3450 downloads, 3 subscriptions

About: Cox models by likelihood based boosting for a single survival endpoint or competing risks

Changes:

Fetched by r-cran-robot on 2014-10-01 00:00:04.396778


Logo r-cran-penalized 0.9-42

by r-cran-robot - November 6, 2012, 00:00:00 CET [ Project Homepage BibTeX Download ] 14957 views, 3416 downloads, 1 subscription

About: L1 (lasso and fused lasso) and L2 (ridge) penalized estimation in GLMs and in the Cox model

Changes:

Fetched by r-cran-robot on 2013-04-01 00:00:06.939105


Logo JMLR LWPR 1.2.4

by sklanke - February 6, 2012, 19:55:41 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 27228 views, 3384 downloads, 1 subscription

About: Locally Weighted Projection Regression (LWPR) is a recent algorithm that achieves nonlinear function approximation in high dimensional spaces with redundant and irrelevant input dimensions. At its [...]

Changes:

Version 1.2.4

  • Corrected typo in lwpr.c (wrong function name for multi-threaded helper function on Unix systems) Thanks to Jose Luis Rivero

Logo JMLR Jstacs 2.1

by keili - June 3, 2013, 07:32:55 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 14185 views, 3380 downloads, 2 subscriptions

About: A Java framework for statistical analysis and classification of biological sequences

Changes:

New classes:

  • MultipleIterationsCondition: Requires another TerminationCondition to fail a contiguous, specified number of times
  • ClassifierFactory: Allows for creating standard classifiers
  • SeqLogoPlotter: Plot PNG sequence logos from within Jstacs
  • MultivariateGaussianEmission: Multivariate Gaussian emission density for a Hidden Markov Model
  • MEManager: Maximum entropy model

New features and improvements:

  • Alignment: Added free shift alignment
  • PerformanceMeasure and sub-classes: Extension to weighted test data
  • AbstractClassifier, ClassifierAssessment and sub-classes: Adaption to weighted PerformanceMeasures
  • DNAAlphabet: Parser speed-up
  • PFMComparator: Extension to PFM from other sources/databases
  • ToolBox: New convenience methods for computing several statistics (e.g., median, correlation)
  • SignificantMotifOccurrencesFinder: New methods for computing PWMs and statistics from predictions
  • SequenceScore and sub-classes: New method toString(NumberFormat)
  • DataSet: Adaption to weighted data, e.g., partitioning
  • REnvironment: Changed several methods from String to CharSequence

Restructuring:

  • changed MultiDimensionalSequenceWrapperDiffSM to MultiDimensionalSequenceWrapperDiffSS

Several minor new features, bug fixes, and code cleanups


About: SVDFeature is a toolkit for developing generic collaborative filtering algorithms by defining features.

Changes:

JMLR MLOSS version.


Showing Items 41-50 of 540 on page 5 of 54: Previous 1 2 3 4 5 6 7 8 9 10 Next Last