All entries.
Showing Items 21-30 of 552 on page 3 of 56: Previous 1 2 3 4 5 6 7 8 Next Last

Logo Milk 0.5

by luispedro - November 7, 2012, 13:08:28 CET [ Project Homepage BibTeX Download ] 22121 views, 5319 downloads, 1 subscription

Rating Whole StarWhole StarWhole StarEmpty StarEmpty Star
(based on 2 votes)

About: Python Machine Learning Toolkit

Changes:

Added LASSO (using coordinate descent optimization). Made SVM classification (learning and applying) much faster: 2.5x speedup on yeast UCI dataset.


Logo MPIKmeans 1.5

by pgehler - January 16, 2009, 15:48:47 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 33267 views, 5180 downloads, 1 subscription

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 1 vote)

About: A K-means clustering implementation for command-line, Python, Matlab and C. This algorithm yields the very same solution as standard Kmeans, even after each iteration. However it uses some triangle [...]

Changes:

Initial Announcement on mloss.org.


Logo r-cran-party 1.0-6

by r-cran-robot - January 9, 2013, 00:00:00 CET [ Project Homepage BibTeX Download ] 20840 views, 4992 downloads, 1 subscription

About: A Laboratory for Recursive Partytioning

Changes:

Fetched by r-cran-robot on 2013-04-01 00:00:06.775432


Logo r-cran-mboost 2.2-2

by r-cran-robot - February 8, 2013, 00:00:00 CET [ Project Homepage BibTeX Download ] 28118 views, 4970 downloads, 1 subscription

About: Model-Based Boosting

Changes:

Fetched by r-cran-robot on 2013-04-01 00:00:06.324985


Logo r-cran-pamr 1.54

by r-cran-robot - April 1, 2013, 00:00:06 CET [ Project Homepage BibTeX Download ] 25391 views, 4842 downloads, 1 subscription

About: Pam

Changes:

Fetched by r-cran-robot on 2013-04-01 00:00:06.709586


Logo JMLR scikitlearn 0.14.1

by fabianp - October 4, 2013, 15:01:45 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 13593 views, 4837 downloads, 3 subscriptions

Rating Whole StarWhole StarWhole StarWhole Star1/2 Star
(based on 3 votes)

About: The scikit-learn project is a machine learning library in Python.

Changes:

Update for 0.14.1


Logo JMLR CARP 3.3

by volmeln - November 7, 2013, 15:48:06 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 15034 views, 4815 downloads, 1 subscription

About: CARP: The Clustering Algorithms’ Referee Package

Changes:

Generalized overlap error and some bugs have been fixed


Logo JMLR GPML Gaussian Processes for Machine Learning Toolbox 3.5

by hn - December 8, 2014, 13:54:38 CET [ Project Homepage BibTeX Download ] 20540 views, 4802 downloads, 3 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarWhole Star
(based on 2 votes)

About: The GPML toolbox is a flexible and generic Octave 3.2.x and Matlab 7.x implementation of inference and prediction in Gaussian Process (GP) models.

Changes:
  • mechanism for specifying hyperparameter priors (together with Roman Garnett and José Vallet)
  • new inference method inf/infGrid allowing efficient inference for data defined on a Cartesian grid (together with Andrew Wilson)
  • new mean/cov functions for preference learning: meanPref/covPref
  • new mean/cov functions for non-vectorial data: meanDiscrete/covDiscrete
  • new piecewise constant nearest neighbor mean function: meanNN
  • new mean functions being predictions from GPs: meanGP and meanGPexact
  • new covariance function for standard additive noise: covEye
  • new covariance function for factor analysis: covSEfact
  • new covariance function with varying length scale : covSEvlen
  • make covScale more general to scaling with a function instead of a scalar
  • bugfix in covGabor* and covSM (due to Andrew Gordon Wilson)
  • bugfix in lik/likBeta.m (suggested by Dali Wei)
  • bugfix in solve_chol.c (due to Todd Small)
  • bugfix in FITC inference mode (due to Joris Mooij) where the wrong mode for post.L was chosen when using infFITC and post.L being a diagonal matrix
  • bugfix in infVB marginal likelihood for likLogistic with nonzero mean function (reported by James Lloyd)
  • removed the combination likErf/infVB as it yields a bad posterior approximation and lacks theoretical justification
  • Matlab and Octave compilation for L-BFGS-B v2.4 and the more recent L-BFGS-B v3.0 (contributed by José Vallet)
  • smaller bugfixes in gp.m (due to Joris Mooij and Ernst Kloppenburg)
  • bugfix in lik/likBeta.m (due to Dali Wei)
  • updated use of logphi in lik/likErf
  • bugfix in util/solve_chol.c where a typing issue occured on OS X (due to Todd Small)
  • bugfix due to Bjørn Sand Jensen noticing that cov_deriv_sq_dist.m was missing in the distribution
  • bugfix in infFITC_EP for ttau->inf (suggested by Ryan Turner)

Logo JMLR MOA Massive Online Analysis Nov-13

by abifet - April 4, 2014, 03:50:20 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 11969 views, 4727 downloads, 1 subscription

About: Massive Online Analysis (MOA) is a real time analytic tool for data streams. It is a software environment for implementing algorithms and running experiments for online learning from evolving data streams. MOA includes a collection of offline and online methods as well as tools for evaluation. In particular, it implements boosting, bagging, and Hoeffding Trees, all with and without Naive Bayes classifiers at the leaves. MOA supports bi-directional interaction with WEKA, the Waikato Environment for Knowledge Analysis, and it is released under the GNU GPL license.

Changes:

New version November 2013


Logo MLDemos 0.5.1

by basilio - March 2, 2013, 16:06:13 CET [ Project Homepage BibTeX Download ] 19265 views, 4545 downloads, 2 subscriptions

About: MLDemos is a user-friendly visualization interface for various machine learning algorithms for classification, regression, clustering, projection, dynamical systems, reward maximisation and reinforcement learning.

Changes:

New Visualization and Dataset Features Added 3D visualization of samples and classification, regression and maximization results Added Visualization panel with individual plots, correlations, density, etc. Added Editing tools to drag/magnet data, change class, increase or decrease dimensions of the dataset Added categorical dimensions (indexed dimensions with non-numerical values) Added Dataset Editing panel to swap, delete and rename dimensions, classes or categorical values Several bug-fixes for display, import/export of data, classification performance

New Algorithms and methodologies Added Projections to pre-process data (which can then be classified/regressed/clustered), with LDA, PCA, KernelPCA, ICA, CCA Added Grid-Search panel for batch-testing ranges of values for up to two parameters at a time Added One-vs-All multi-class classification for non-multi-class algorithms Trained models can now be kept and tested on new data (training on one dataset, testing on another) Added a dataset generator panel for standard toy datasets (e.g. swissroll, checkerboard,...) Added a number of clustering, regression and classification algorithms (FLAME, DBSCAN, LOWESS, CCA, KMEANS++, GP Classification, Random Forests) Added Save/Load Model option for GMMs and SVMs Added Growing Hierarchical Self Organizing Maps (original code by Michael Dittenbach) Added Automatic Relevance Determination for SVM with RBF kernel (Thanks to Ashwini Shukla!)


Showing Items 21-30 of 552 on page 3 of 56: Previous 1 2 3 4 5 6 7 8 Next Last