All entries.
Showing Items 191-200 of 628 on page 20 of 63: First Previous 15 16 17 18 19 20 21 22 23 24 25 Next Last

Logo SimpleSVM 2.99

by gaelle - November 15, 2007, 16:59:45 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 11079 views, 1974 downloads, 0 subscriptions

About: The SimpleSVM toolbox contains the svm solver of the same name. The current version includes C-SVM, HM-SVM and nu-SVM based on the regularization path. It will soon include OC-SVM, regularization [...]

Changes:

Initial Announcement on mloss.org.


Logo pyGPs 1.3.2

by mn - January 17, 2015, 13:08:43 CET [ Project Homepage BibTeX Download ] 8555 views, 1961 downloads, 4 subscriptions

About: pyGPs is a Python package for Gaussian process (GP) regression and classification for machine learning.

Changes:

Changelog pyGPs v1.3.2

December 15th 2014

  • pyGPs added to pip
  • mathematical definitions of kernel functions available in documentation
  • more error message added

Logo Circular Statistics Toolbox 2010c

by phb - June 9, 2010, 13:02:26 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 14706 views, 1958 downloads, 1 subscription

About: Toolbox for circular statistics with Matlab (The Mathworks).

Changes:

Some bugfixes.


Logo Caffe 0.9999

by sergeyk - August 9, 2014, 01:57:58 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 12100 views, 1954 downloads, 2 subscriptions

About: Caffe aims to provide computer vision scientists with a clean, modifiable implementation of state-of-the-art deep learning algorithms. We believe that Caffe is the fastest available GPU CNN implementation. Caffe also provides seamless switching between CPU and GPU, which allows one to train models with fast GPUs and then deploy them on non-GPU clusters. Even in CPU mode, computing predictions on an image takes only 20 ms (in batch mode).

Changes:

LOTS of stuff: https://github.com/BVLC/caffe/releases/tag/v0.9999


Logo Aciqra 1.2.1

by Caglow - June 25, 2009, 23:30:22 CET [ BibTeX Download ] 4126 views, 1953 downloads, 1 subscription

About: A desktop planetarium and sky map program which shows the sky from anywhere on Earth at any time.

Changes:

Removed erroneous topocentric code. Increased maximum zoom for detail on planets.


Logo EANT Without Structural Optimization 1.0

by yk - September 28, 2009, 12:34:38 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 6187 views, 1951 downloads, 1 subscription

About: EANT Without Structural Optimization is used to learn a policy in either complete or partially observable reinforcement learning domains of continuous state and action space.

Changes:

Initial Announcement on mloss.org.


About: OpenGM is a free C++ template library, a command line tool and a set of MATLAB functions for optimization in higher order graphical models. Graphical models of any order and structure can be built either in C++ or in MATLAB, using simple and intuitive commands. These models can be stored in HDF5 files and subjected to state-of-the-art optimization algorithms via the OpenGM command line optimizer. All library functions can also be called directly from C++ code. OpenGM realizes the Inference Algorithm Interface (IAI), a concept that makes it easy for programmers to use their own algorithms and factor classes with OpenGM.

Changes:

Initial Announcement on mloss.org.


Logo Oger 1.1.3

by dvrstrae - August 13, 2012, 14:55:41 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 4965 views, 1945 downloads, 1 subscription

About: The OrGanic Environment for Reservoir computing (Oger) toolbox is a Python toolbox for rapidly building, training and evaluating modular learning architectures on large datasets.

Changes:

Initial Announcement on mloss.org.


Logo A Pattern Recognizer In Lua with ANNs v0.4.1

by pakozm - December 3, 2015, 15:01:36 CET [ Project Homepage BibTeX Download ] 8582 views, 1942 downloads, 2 subscriptions

About: APRIL-ANN toolkit (A Pattern Recognizer In Lua with Artificial Neural Networks). This toolkit incorporates ANN algorithms (as dropout, stacked denoising auto-encoders, convolutional neural networks), with other pattern recognition methods as hidden makov models (HMMs) among others.

Changes:
  • Updated home repository link to follow april-org github organization.
  • Improved serialize/deserialize functions, reimplemented all the serialization procedure.
  • Added exceptions support to LuaPkg and APRIL-ANN, allowing to capture C++ errors into Lua code.
  • Added set class.
  • Added series class.
  • Added data_frame class, similar to Python Pandas DataFrame.
  • Serialization and deserilization have been updated with more robust and reusable API, implemented in util.serialize() and util.deserialize() functions.
  • Added matrix.ext.broadcast utility (similar to broadcast in numpy).
  • Added ProbablisitcMatrixANNComponent, which allow to implement probabilistic mixtures of posteriors and/or likelihoods.
  • Added batch normalization ANN component.
  • Allowing matrix.join to add new axis.
  • Added methods prod(), cumsum() and cumprod() at matrix classes.
  • Added methods count_eq() and count_neq() at matrix classes.
  • Serializable objects API have been augmented with methods ctor_name() and
    ctor_params() in Lua, refered to luaCtorName() and luaCtorParams() in C++.
  • Added cast.to to dynamic cast C++ objects pushed into Lua, allowing to convert base class objects into any of its derived classes.
  • Added matrix.sparse as valid values for targets in ann.loss.mse and
    ann.loss.cross_entropy.
  • Changed matrix metamethods __index and __newindex, allowing to use
    matrix objects with standard Lua operator[].
  • Added matrix.masked_fill and matrix.masked_copy matrix.
  • Added matrix.indexed_fill and matrix.indexed_copy matrix.
  • Added ann.components.probabilistic_matrix, and its corresponding specializations ann.components.left_probabilistic_matrix and
    ann.components.right_probabilistic_matrix.
  • Added operator[] in the right side of matrix operations.
  • Added ann.components.transpose.
  • Added max_gradients_norm in traianble.supervised_trainer, to avoid gradients exploding.
  • Added ann.components.actf.sparse_logistic a logistic activation function with sparsity penalty.
  • Simplified math.add, math.sub, ... and other math extensions for reductions, their original behavior can be emulated by using bind function.
  • Added bind function to freeze any positional argument of any Lua function.
  • Function stats.boot uses multiple_unpack to allow a table of sizes and the generation of multiple index matrices.
  • Added multiple_unpack Lua function.
  • Added __tostring metamethod to numeric memory blocks in Lua.
  • Added dataset.token.sparse_matrix, a dataset which allow to traverse by rows a sparse matrix instance.
  • Added matrix.sparse.builders.dok, a builder which uses the Dictionary-of-Keys format to construct a sparse matrix from scratch.
  • Added method data to numeric matrix classes.
  • Added methods values, indices, first_index to sparse matrix class.
  • Fixed bugs when reading bad formed CSV files.
  • Fixed bugs at statistical distributions.
  • FloatRGB bug solved on equal (+=, -=, ...) operators. This bug affected ImageRGB operations such as resize.
  • Solved problems when chaining methods in Lua, some objects end to be garbage collected.
  • Improved support of strings in auto-completion (rlcompleter package).
  • Solved bug at SparseMatrix<T> when reading it from a file.
  • Solved bug in Image<T>::rotate90_cw methods.
  • Solved bug in SparseMatrix::toDense() method.

C/C++

  • Better LuaTable accessors, using [] operator.
  • Implementation of matrix __index, __newindex and __call metamethods in C++.
  • Implementation of matProd(), matCumSum() and matCumProd() functions.
  • Implementation of matCountEq() and matCountNeq() functions for
    Matrix<T>.
  • Updated matrix_ext_operations.h to change API of matrix operations. All functions have been overloaded to accept an in-place operation and another version which receives a destination matrix.
  • Adding iterators to language models.
  • Added MatrixScalarMap2 which receives as input2 a SparaseMatrix instance. This functions needs to be generalized to work with CPU and CUDA.
  • The method SparseMatrix<T>::fromDenseMatrix() uses a DOKBuilder object to build the sparse matrix.
  • The conversion of a Matrix<T> into a SparseMatrix<T> has been changed from a constructor overload to the static method
    SparseMatrix<T>::fromDenseMatrix().
  • Added support for IPyLua.
  • Optimized matrix access for confusion matrix.
  • Minor changes in class.lua.
  • Improved binding to avoid multiple object copies when pushing C++ objects.
  • Added Git commit hash and compilation time.

Logo VLFeat 0.9.16

by andreavedaldi - October 5, 2012, 18:44:17 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 10950 views, 1938 downloads, 1 subscription

About: The VLFeat open source library implements popular computer vision algorithms including affine covariant feature detectors, HOG, SIFT, MSER, k-means, hierarchical k-means, agglomerative information bottleneck, SLIC superpixels, and quick shift. It is written in C for efficiency and compatibility, with interfaces in MATLAB for ease of use, and detailed documentation throughout. It supports Windows, Mac OS X, and Linux. The latest version of VLFeat is 0.9.16.

Changes:

VLFeat 0.9.16: Added VL_COVDET() (covariant feature detectors). This function implements the following detectors: DoG, Hessian, Harris Laplace, Hessian Laplace, Multiscale Hessian, Multiscale Harris. It also implements affine adaptation, estiamtion of feature orientation, computation of descriptors on the affine patches (including raw patches), and sourcing of custom feature frame. Addet the auxiliary function VL_PLOTSS(). This is the second point update supported by the PASCAL Harvest programme.

VLFeat 0.9.15: Added VL_HOG() (HOG features). Added VL_SVMPEGASOS() and a vastly improved SVM implementation. Added IHASHSUM (hashed counting). Improved INTHIST (integral histogram). Added VL_CUMMAX(). Improved the implementation of VL_ROC() and VL_PR(). Added VL_DET() (Detection Error Trade-off (DET) curves). Improved the verbosity control to AIB. Added support for Xcode 4.3, improved support for past and future Xcode versions. Completed the migration of the old test code in toolbox/test, moving the functionality to the new unit tests toolbox/xtest. Improved credits. This is the first point update supported by the PASCAL Harvest (several more to come shortly).


Showing Items 191-200 of 628 on page 20 of 63: First Previous 15 16 17 18 19 20 21 22 23 24 25 Next Last