All entries.
Showing Items 111-120 of 561 on page 12 of 57: First Previous 7 8 9 10 11 12 13 14 15 16 17 Next Last

Logo OpenCog pre-1.0

by ferrouswheel - January 11, 2009, 22:51:39 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 4672 views, 2097 downloads, 1 subscription

About: OpenCog aims to provide research scientists and software developers with a common platform to build and share artificial intelligence programs. The long-term goal of OpenCog is acceleration of the [...]

Changes:

Initial Announcement on mloss.org.


Logo FABIA 2.8.0

by hochreit - October 18, 2013, 10:14:57 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 9909 views, 2073 downloads, 1 subscription

Rating Whole StarWhole StarWhole StarWhole Star1/2 Star
(based on 1 vote)

About: FABIA is a biclustering algorithm that clusters rows and columns of a matrix simultaneously. Consequently, members of a row cluster are similar to each other on a subset of columns and, analogously, members of a column cluster are similar to each other on a subset of rows. Biclusters are found by factor analysis where both the factors and the loading matrix are sparse. FABIA is a multiplicative model that extracts linear dependencies between samples and feature patterns. Applications include detection of transcriptional modules in gene expression data and identification of haplotypes/>identity by descent< consisting of rare variants obtained by next generation sequencing.

Changes:

CHANGES IN VERSION 2.8.0

NEW FEATURES

o rescaling of lapla
o extractPlot does not plot sorted matrices

CHANGES IN VERSION 2.4.0

o spfabia bugfixes

CHANGES IN VERSION 2.3.1

NEW FEATURES

o Getters and setters for class Factorization

2.0.0:

  • spfabia: fabia for a sparse data matrix (in sparse matrix format) and sparse vector/matrix computations in the code to speed up computations. spfabia applications: (a) detecting >identity by descent< in next generation sequencing data with rare variants, (b) detecting >shared haplotypes< in disease studies based on next generation sequencing data with rare variants;
  • fabia for non-negative factorization (parameter: non_negative);
  • changed to C and removed dependencies to Rcpp;
  • improved update for lambda (alpha should be smaller, e.g. 0.03);
  • introduced maximal number of row elements (lL);
  • introduced cycle bL when upper bounds nL or lL are effective;
  • reduced computational complexity;
  • bug fixes: (a) update formula for lambda: tighter approximation, (b) corrected inverse of the conditional covariance matrix of z;

1.4.0:

  • New option nL: maximal number of biclusters per row element;
  • Sort biclusters according to information content;
  • Improved and extended preprocessing;
  • Update to R2.13

Logo PREA Personalized Recommendation Algorithms Toolkit 1.1

by srcw - September 1, 2012, 22:53:37 CET [ Project Homepage BibTeX Download ] 8225 views, 2071 downloads, 2 subscriptions

About: An open source Java software providing collaborative filtering algorithms.

Changes:

Initial Announcement on mloss.org.


Logo ELKI 0.6.0

by erich - January 10, 2014, 18:32:28 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 11512 views, 2066 downloads, 3 subscriptions

About: ELKI is a framework for implementing data-mining algorithms with support for index structures, that includes a wide variety of clustering and outlier detection methods.

Changes:

Additions and Improvements from ELKI 0.5.5:

Algorithms

Clustering:

  • Hierarchical Clustering - the slower naive variants were added, and the code was refactored
  • Partition extraction from hierarchical clusterings - different linkage strategies (e.g. Ward)
  • Canopy pre-Clustering
  • Naive Mean-Shift Clustering
  • Affinity propagation clustering (both with distances and similarities / kernel functions)
  • K-means variations: Best-of-multiple-runs, bisecting k-means
  • New k-means initialization: farthest points, sample initialization
  • Cheng and Church Biclustering
  • P3C Subspace Clustering
  • One-dimensional clustering algorithm based on kernel density estimation

Outlier detection

  • COP - correlation outlier probabilities
  • LDF - a kernel density based LOF variant
  • Simplified LOF - a simpler version of LOF (not using reachability distance)
  • Simple Kernel Density LOF - a simple LOF using kernel density (more consistent than LDF)
  • Simple outlier ensemble algorithm
  • PINN - projection indexed nearest neighbors, via projected indexes.
  • ODIN - kNN graph based outlier detection
  • DWOF - Dynamic-Window Outlier Factor (contributed by Omar Yousry)
  • ABOD refactored, into ABOD, FastABOD and LBABOD

Distances

  • Geodetic distances now support different world models (WGS84 etc.) and are subtantially faster.
  • Levenshtein distances for processing strings, e.g. for analyzing phonemes (contributed code, see "Word segmentation through cross-lingual word-to-phoneme alignment", SLT2013, Stahlberg et al.)
  • Bray-Curtis, Clark, Kulczynski1 and Lorentzian distances with R-tree indexing support
  • Histogram matching distances
  • Probabilistic divergence distances (Jeffrey, Jensen-Shannon, Chi2, Kullback-Leibler)
  • Kulczynski2 similarity
  • Kernel similarity code has been refactored, and additional kernel functions have been added

Database Layer and Data Types

Projection layer * Parser for simple textual data (for use with Levenshtein distance) Various random projection families (including Feature Bagging, Achlioptas, and p-stable) Latitude+Longitude to ECEF Sparse vector improvements and bug fixes New filter: remove NaN values and missing values New filter: add histogram-based jitter New filter: normalize using statistical distributions New filter: robust standardization using Median and MAD New filter: Linear discriminant analysis (LDA)

Index Layer

  • Another speed up in R-trees
  • Refactoring of M- and R-trees: Support for different strategies in M-tree New strategies for M-tree splits Speedups in M-tree
  • New index structure: in-memory k-d-tree
  • New index structure: in-memory Locality Sensitive Hashing (LSH)
  • New index structure: approximate projected indexes, such as PINN
  • Index support for geodetic data - (Details: Geodetic Distance Queries on R-Trees for Indexing Geographic Data, SSTD13)
  • Sampled k nearest neighbors: reference KDD13 "Subsampling for Efficient and Effective Unsupervised Outlier Detection Ensembles"
  • Cached (precomputed) k-nearest neighbors to share across multiple runs
  • Benchmarking "algorithms" for indexes

Mathematics and Statistics

  • Many new distributions have been added, now 28 different distributions are supported
  • Additional estimation methods (using advanced statistics such as L-Moments), now 44 estimators are available
  • Trimming and Winsorizing
  • Automatic best-fit distribution estimation
  • Preprocessor using these distributions for rescaling data sets
  • API changes related to the new distributions support
  • More kernel density functions
  • RANSAC covariance matrix builder (unfortunately rather slow)

Visualization

  • 3D projected coordinates (Details: Interactive Data Mining with 3D-Parallel-Coordinate-Trees, SIGMOD2013)
  • Convex hulls now also include nested hierarchical clusters

Other

  • Parser speedups
  • Sparse vector bug fixes and improvements
  • Various bug fixes
  • PCA, MDS and LDA filters
  • Text output was slightly improved (but still needs to be redesigned from scratch - please contribute!)
  • Refactoring of hierarchy classes
  • New heap classes and infrastructure enhancements
  • Classes can have aliases, e.g. "l2" for euclidean distance.
  • Some error messages were made more informative.
  • Benchmarking classes, also for approximate nearest neighbor search.

Logo chi2 kernel 1.5

by gruel - February 15, 2009, 22:32:21 CET [ BibTeX Download ] 9451 views, 2059 downloads, 1 subscription

About: Very fast implementation of the chi-squared distance between histograms (or vectors with non-negative entries).

Changes:

Removed bug in symmetric chi-square distance and updated python wrapper to python 2.5 compatiblity.


Logo ADAMS 0.4.7

by fracpete - December 24, 2014, 02:57:41 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 8817 views, 2014 downloads, 2 subscriptions

About: The Advanced Data mining And Machine learning System (ADAMS) is a novel, flexible workflow engine aimed at quickly building and maintaining real-world, complex knowledge workflows.

Changes:
  • 51 new actors
  • 16 new conversions
  • new module adams-jooq: code generation from JDBC databases for typed access
  • new module adams-image-webservice: allows upload of images using webservice
  • adams-timeseries module extended
  • adams-spreadsheet module extended
  • adams-random module extended
  • adams-imaging module overhaul

Logo JMLR Tapkee 1.0

by blackburn - April 10, 2014, 02:45:58 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 6924 views, 2012 downloads, 1 subscription

About: Tapkee is an efficient and flexible C++ template library for dimensionality reduction.

Changes:

Initial Announcement on mloss.org.


Logo HSSVM 1.0.1

by xjbean - June 8, 2010, 16:16:05 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 9794 views, 1965 downloads, 1 subscription

Rating Whole StarWhole StarWhole StarWhole StarWhole Star
(based on 1 vote)

About: HSSVM is a software for solving multi-class problem using Hyper-sphere Support Vector Machines model, implemented by Java.

Changes:
  1. From this version, the version number is normalized to hssvm1.0.1;
  2. In this version, we delete the features about running parameter searching and run-all from Ant script, that is, commands "ant search-param" and "ant run-all" which exist in previous version are no longer available, and they are replaced with commands "svm search conf" and "svm runall conf", both of them are used on Linux(or all other POSIX systems).If you want to use this program on Windows, the cygwin is required to be installed.

Logo Pattern 2.4

by tomdesmedt - August 31, 2012, 02:26:01 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 7324 views, 1961 downloads, 1 subscription

About: "Pattern" is a web mining module for Python. It bundles tools for data retrieval, text analysis, clustering and classification, and data visualization.

Changes:
  • Small bug fixes in overall + performance improvements.
  • Module pattern.web: updated to the new Bing API (Bing API has is paid service now).
  • Module pattern.en: now includes Norvig's spell checking algorithm.
  • Module pattern.de: new German tagger/chunker, courtesy of Schneider & Volk (1998) who kindly agreed to release their work in Pattern under BSD.
  • Module pattern.search: the search syntax now includes { } syntax to define match groups.
  • Module pattern.vector: fast implementation of information gain for feature selection.
  • Module pattern.graph: now includes a toy semantic network of commonsense (see examples).
  • Module canvas.js: image pixel effects & editor now supports live editing

Logo JMLR LIBLINEAR 1.32

by biconnect - September 3, 2008, 17:35:24 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 17232 views, 1961 downloads, 2 subscriptions

Rating Whole StarWhole StarWhole StarWhole Star1/2 Star
(based on 2 votes)

About: LIBLINEAR is a linear classifier for data with millions of instances and features. It supports L2-regularized logistic regression (LR), L2-loss linear SVM, L1-loss linear SVM, and multi-class SVM

Changes:

Initial Announcement on mloss.org.


Showing Items 111-120 of 561 on page 12 of 57: First Previous 7 8 9 10 11 12 13 14 15 16 17 Next Last