All entries.
Showing Items 101-110 of 672 on page 11 of 68: First Previous 6 7 8 9 10 11 12 13 14 15 16 Next Last

Logo Orange 2.6

by janez - February 14, 2013, 18:15:08 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 23217 views, 4220 downloads, 1 subscription

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 1 vote)

About: Orange is a component-based machine learning and data mining software. It includes a friendly yet powerful and flexible graphical user interface for visual programming. For more advanced use(r)s, [...]

Changes:

The core of the system (except the GUI) no longer includes any GPL code and can be licensed under the terms of BSD upon request. The graphical part remains under GPL.

Changed the BibTeX reference to the paper recently published in JMLR MLOSS.


Logo revrand 1.0.0

by dsteinberg - January 29, 2017, 04:33:54 CET [ Project Homepage BibTeX Download ] 19408 views, 4113 downloads, 3 subscriptions

Rating Empty StarEmpty StarEmpty StarEmpty StarEmpty Star
(based on 1 vote)

About: A library of scalable Bayesian generalised linear models with fancy features

Changes:
  • 1.0 release!
  • Now there is a random search phase before optimization of all hyperparameters in the regression algorithms. This improves the performance of revrand since local optima are more easily avoided with this improved initialisation
  • Regression regularizers (weight variances) associated with each basis object, this approximates GP kernel addition more closely
  • Random state can be set for all random objects
  • Numerous small improvements to make revrand production ready
  • Final report
  • Documentation improvements

About: Infrastructure for representing, manipulating and analyzing transaction data and frequent patterns.

Changes:

Initial Announcement on mloss.org.


Logo libAGF 0.9.8

by Petey - December 6, 2014, 02:35:39 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 21876 views, 4014 downloads, 2 subscriptions

About: C++ software for statistical classification, probability estimation and interpolation/non-linear regression using variable bandwidth kernel estimation.

Changes:

New in Version 0.9.8:

  • bug fixes: svm file conversion works properly and is more general

  • non-hierarchical multi-borders has 3 options for solving for the conditional probabilities: matrix inversion, voting, and matrix inversion over-ridden by voting, with re-normalization

  • multi-borders now works with external binary classifiers

  • random numbers resolve a tie when selecting classes based on probabilities

  • pair of routines, sort_discrete_vectors and search_discrete_vectors, for classification based on n-d binning (still experimental)

  • command options have been changed with many new additions, see QUICKSTART file or run the relevant commands for details


Logo SimpleMKL 0.5

by arakotom - June 11, 2008, 00:56:47 CET [ Project Homepage BibTeX Download ] 15639 views, 3982 downloads, 5 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarWhole Star
(based on 2 votes)

About: Matlab Multiple Kernel Learning toolbox. Features : MKL for SVM Classification, Regression and MultiClass. It needs SVM-KM Toolbox

Changes:

Initial Announcement on mloss.org.


Logo FABIA 2.8.0

by hochreit - October 18, 2013, 10:14:57 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 19548 views, 3968 downloads, 1 subscription

Rating Whole StarWhole StarWhole StarWhole Star1/2 Star
(based on 1 vote)

About: FABIA is a biclustering algorithm that clusters rows and columns of a matrix simultaneously. Consequently, members of a row cluster are similar to each other on a subset of columns and, analogously, members of a column cluster are similar to each other on a subset of rows. Biclusters are found by factor analysis where both the factors and the loading matrix are sparse. FABIA is a multiplicative model that extracts linear dependencies between samples and feature patterns. Applications include detection of transcriptional modules in gene expression data and identification of haplotypes/>identity by descent< consisting of rare variants obtained by next generation sequencing.

Changes:

CHANGES IN VERSION 2.8.0

NEW FEATURES

o rescaling of lapla
o extractPlot does not plot sorted matrices

CHANGES IN VERSION 2.4.0

o spfabia bugfixes

CHANGES IN VERSION 2.3.1

NEW FEATURES

o Getters and setters for class Factorization

2.0.0:

  • spfabia: fabia for a sparse data matrix (in sparse matrix format) and sparse vector/matrix computations in the code to speed up computations. spfabia applications: (a) detecting >identity by descent< in next generation sequencing data with rare variants, (b) detecting >shared haplotypes< in disease studies based on next generation sequencing data with rare variants;
  • fabia for non-negative factorization (parameter: non_negative);
  • changed to C and removed dependencies to Rcpp;
  • improved update for lambda (alpha should be smaller, e.g. 0.03);
  • introduced maximal number of row elements (lL);
  • introduced cycle bL when upper bounds nL or lL are effective;
  • reduced computational complexity;
  • bug fixes: (a) update formula for lambda: tighter approximation, (b) corrected inverse of the conditional covariance matrix of z;

1.4.0:

  • New option nL: maximal number of biclusters per row element;
  • Sort biclusters according to information content;
  • Improved and extended preprocessing;
  • Update to R2.13

Logo DiffSharp 0.7.7

by gbaydin - January 4, 2016, 00:57:35 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 22081 views, 3943 downloads, 3 subscriptions

About: DiffSharp is a functional automatic differentiation (AD) library providing gradients, Hessians, Jacobians, directional derivatives, and matrix-free Hessian- and Jacobian-vector products as higher-order functions. It allows exact and efficient calculation of derivatives, with support for nesting.

Changes:

Fixed: Bug fix in forward AD implementation of Sigmoid and ReLU for D, DV, and DM (fixes #16, thank you @mrakgr)

Improvement: Performance improvement by removing several more Parallel.For and Array.Parallel.map operations, working better with OpenBLAS multithreading

Added: Operations involving incompatible dimensions of DV and DM will now throw exceptions for warning the user


Logo RapidMiner 4.0

by ingomierswa - November 16, 2007, 02:31:48 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 22764 views, 3907 downloads, 0 comments, 0 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarWhole Star
(based on 5 votes)

About: RapidMiner (formerly YALE) is one of the most widely used open-source data mining suites and software solutions due to its leading-edge technologies and its functional range. Applications of [...]

Changes:

Initial Announcement on mloss.org.


Logo MLweb 1.2

by lauerfab - February 23, 2018, 15:40:27 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 16504 views, 3861 downloads, 3 subscriptions

About: MLweb is an open source project that aims at bringing machine learning capabilities into web pages and web applications, while maintaining all computations on the client side. It includes (i) a javascript library to enable scientific computing within web pages, (ii) a javascript library implementing machine learning algorithms for classification, regression, clustering and dimensionality reduction, (iii) a web application providing a matlab-like development environment.

Changes:
  • Add bibtex entry of corresponding Neurocomputing paper
  • Create javascript modules to avoid global scope pollution in web pages

About: Nimfa is an open-source Python library that provides a unified interface to nonnegative matrix factorization algorithms. It includes implementations of state-of-the-art factorization methods, initialization approaches, and quality scoring. Both dense and sparse matrix representation are supported.

Changes:

Initial Announcement on mloss.org.


Showing Items 101-110 of 672 on page 11 of 68: First Previous 6 7 8 9 10 11 12 13 14 15 16 Next Last