All entries.
Showing Items 101-110 of 588 on page 11 of 59: First Previous 6 7 8 9 10 11 12 13 14 15 16 Next Last

About: This local and parallel computation toolbox is the Octave and Matlab implementation of several localized Gaussian process regression methods: the domain decomposition method (Park et al., 2011, DDM), partial independent conditional (Snelson and Ghahramani, 2007, PIC), localized probabilistic regression (Urtasun and Darrell, 2008, LPR), and bagging for Gaussian process regression (Chen and Ren, 2009, BGP). Most of the localized regression methods can be applied for general machine learning problems although DDM is only applicable for spatial datasets. In addition, the GPLP provides two parallel computation versions of the domain decomposition method. The easiness of being parallelized is one of the advantages of the localized regression, and the two parallel implementations will provide a good guidance about how to materialize this advantage as software.

Changes:

Initial Announcement on mloss.org.


Logo PREA Personalized Recommendation Algorithms Toolkit 1.1

by srcw - September 1, 2012, 22:53:37 CET [ Project Homepage BibTeX Download ] 9410 views, 2408 downloads, 2 subscriptions

About: An open source Java software providing collaborative filtering algorithms.

Changes:

Initial Announcement on mloss.org.


Logo SVM and Kernel Methods Toolbox 0.5

by arakotom - June 10, 2008, 21:29:39 CET [ Project Homepage BibTeX Download ] 10063 views, 2399 downloads, 2 subscriptions

Rating Whole StarWhole StarWhole Star1/2 StarEmpty Star
(based on 1 vote)

About: SVM Toolbox fully written in Matlab (even the QP solver). Features : SVM, MultiClassSVM, One-Class, SV Regression, AUC-SVM and Rankboost, 1-norm SVM, Regularization Networks, Kernel Basis Pursuit [...]

Changes:

Initial Announcement on mloss.org.


Logo Lush 1.2.1

by ylecun - November 12, 2007, 06:35:08 CET [ Project Homepage BibTeX Download ] 5464 views, 2380 downloads, 0 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 4 votes)

About: Lush is an object-oriented Lisp dialect with a super-simple way of integrating C/C++ code and libraries. It includes extensive libraries for numerical computing, machine learning, and computer [...]

Changes:

Initial Announcement on mloss.org.


Logo JMLR pebl Python Environment for Bayesian Learning 1.0.1

by abhik - March 5, 2009, 00:05:28 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 23905 views, 2369 downloads, 1 subscription

About: Pebl is a python library and command line application for learning the structure of a Bayesian network given prior knowledge and observations.

Changes:

Updated version to 1.0.1


Logo ELKI 0.6.0

by erich - January 10, 2014, 18:32:28 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 13049 views, 2354 downloads, 3 subscriptions

About: ELKI is a framework for implementing data-mining algorithms with support for index structures, that includes a wide variety of clustering and outlier detection methods.

Changes:

Additions and Improvements from ELKI 0.5.5:

Algorithms

Clustering:

  • Hierarchical Clustering - the slower naive variants were added, and the code was refactored
  • Partition extraction from hierarchical clusterings - different linkage strategies (e.g. Ward)
  • Canopy pre-Clustering
  • Naive Mean-Shift Clustering
  • Affinity propagation clustering (both with distances and similarities / kernel functions)
  • K-means variations: Best-of-multiple-runs, bisecting k-means
  • New k-means initialization: farthest points, sample initialization
  • Cheng and Church Biclustering
  • P3C Subspace Clustering
  • One-dimensional clustering algorithm based on kernel density estimation

Outlier detection

  • COP - correlation outlier probabilities
  • LDF - a kernel density based LOF variant
  • Simplified LOF - a simpler version of LOF (not using reachability distance)
  • Simple Kernel Density LOF - a simple LOF using kernel density (more consistent than LDF)
  • Simple outlier ensemble algorithm
  • PINN - projection indexed nearest neighbors, via projected indexes.
  • ODIN - kNN graph based outlier detection
  • DWOF - Dynamic-Window Outlier Factor (contributed by Omar Yousry)
  • ABOD refactored, into ABOD, FastABOD and LBABOD

Distances

  • Geodetic distances now support different world models (WGS84 etc.) and are subtantially faster.
  • Levenshtein distances for processing strings, e.g. for analyzing phonemes (contributed code, see "Word segmentation through cross-lingual word-to-phoneme alignment", SLT2013, Stahlberg et al.)
  • Bray-Curtis, Clark, Kulczynski1 and Lorentzian distances with R-tree indexing support
  • Histogram matching distances
  • Probabilistic divergence distances (Jeffrey, Jensen-Shannon, Chi2, Kullback-Leibler)
  • Kulczynski2 similarity
  • Kernel similarity code has been refactored, and additional kernel functions have been added

Database Layer and Data Types

Projection layer * Parser for simple textual data (for use with Levenshtein distance) Various random projection families (including Feature Bagging, Achlioptas, and p-stable) Latitude+Longitude to ECEF Sparse vector improvements and bug fixes New filter: remove NaN values and missing values New filter: add histogram-based jitter New filter: normalize using statistical distributions New filter: robust standardization using Median and MAD New filter: Linear discriminant analysis (LDA)

Index Layer

  • Another speed up in R-trees
  • Refactoring of M- and R-trees: Support for different strategies in M-tree New strategies for M-tree splits Speedups in M-tree
  • New index structure: in-memory k-d-tree
  • New index structure: in-memory Locality Sensitive Hashing (LSH)
  • New index structure: approximate projected indexes, such as PINN
  • Index support for geodetic data - (Details: Geodetic Distance Queries on R-Trees for Indexing Geographic Data, SSTD13)
  • Sampled k nearest neighbors: reference KDD13 "Subsampling for Efficient and Effective Unsupervised Outlier Detection Ensembles"
  • Cached (precomputed) k-nearest neighbors to share across multiple runs
  • Benchmarking "algorithms" for indexes

Mathematics and Statistics

  • Many new distributions have been added, now 28 different distributions are supported
  • Additional estimation methods (using advanced statistics such as L-Moments), now 44 estimators are available
  • Trimming and Winsorizing
  • Automatic best-fit distribution estimation
  • Preprocessor using these distributions for rescaling data sets
  • API changes related to the new distributions support
  • More kernel density functions
  • RANSAC covariance matrix builder (unfortunately rather slow)

Visualization

  • 3D projected coordinates (Details: Interactive Data Mining with 3D-Parallel-Coordinate-Trees, SIGMOD2013)
  • Convex hulls now also include nested hierarchical clusters

Other

  • Parser speedups
  • Sparse vector bug fixes and improvements
  • Various bug fixes
  • PCA, MDS and LDA filters
  • Text output was slightly improved (but still needs to be redesigned from scratch - please contribute!)
  • Refactoring of hierarchy classes
  • New heap classes and infrastructure enhancements
  • Classes can have aliases, e.g. "l2" for euclidean distance.
  • Some error messages were made more informative.
  • Benchmarking classes, also for approximate nearest neighbor search.

Logo LIBSVM 2.9

by cjlin - February 27, 2010, 01:09:23 CET [ Project Homepage BibTeX Download ] 11411 views, 2346 downloads, 1 subscription

Rating Whole StarWhole StarWhole StarWhole Star1/2 Star
(based on 7 votes)

About: LIBSVM is an integrated software for support vector classification, (C-SVC, nu-SVC ), regression (epsilon-SVR, nu-SVR) and distribution estimation (one-class SVM). It supports multi-class [...]

Changes:

Initial Announcement on mloss.org.


Logo PyML a python machine learning library focused on kernel methods 0.7.0

by asa - May 29, 2008, 22:23:39 CET [ Project Homepage BibTeX Download ] 9018 views, 2330 downloads, 0 comments, 0 subscriptions

Rating Whole StarWhole StarWhole StarWhole Star1/2 Star
(based on 1 vote)

About: PyML is an interactive object oriented framework for machine learning in python with a focus on kernel methods.

Changes:

Initial Announcement on mloss.org.


About: TinyOS is a small operating for small (wireless) sensors. LEGO MINDSTORMS NXT is a platform for embedded systems experimentation: The combination of NXT and TinyOS is NXTMOTE.

Changes:

Initial Announcement on mloss.org.


Logo monte python 0.1.0

by roro - May 9, 2008, 21:45:47 CET [ Project Homepage BibTeX Download ] 5849 views, 2292 downloads, 1 subscription

About: Monte (python) is a small machine learning library written in pure Python. The focus is on gradient based learning, in particular on the construction of complex models from many smaller components.

Changes:

Initial Announcement on mloss.org.


Showing Items 101-110 of 588 on page 11 of 59: First Previous 6 7 8 9 10 11 12 13 14 15 16 Next Last