All entries.
Showing Items 1-10 of 674 on page 1 of 68: 1 2 3 4 5 6 Next Last

Logo JMLR dlib ml 19.11

by davis685 - May 18, 2018, 04:19:52 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 231390 views, 35717 downloads, 5 subscriptions

About: This project is a C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real world problems.

Changes:

This release adds a bunch of new image processing routines as well as many minor usability improvements and bug fixes.


Logo JMLR Information Theoretical Estimators 0.63

by szzoli - June 9, 2016, 23:42:14 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 172432 views, 29949 downloads, 3 subscriptions

About: ITE (Information Theoretical Estimators) is capable of estimating many different variants of entropy, mutual information, divergence, association measures, cross quantities and kernels on distributions. Thanks to its highly modular design, ITE supports additionally (i) the combinations of the estimation techniques, (ii) the easy construction and embedding of novel information theoretical estimators, and (iii) their immediate application in information theoretical optimization problems.

Changes:
  • Conditional Shannon entropy estimation: added.

  • Conditional Shannon mutual information estimation: included.


Logo r-cran-caret 6.0-78

by r-cran-robot - January 1, 2018, 00:00:05 CET [ Project Homepage BibTeX Download ] 161083 views, 29692 downloads, 3 subscriptions

About: Classification and Regression Training

Changes:

Fetched by r-cran-robot on 2018-01-01 00:00:05.042473


Logo Armadillo library 8.500

by cu24gjf - April 23, 2018, 17:29:44 CET [ Project Homepage BibTeX Download ] 139066 views, 26542 downloads, 5 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 3 votes)

About: Armadillo is a high quality C++ library for linear algebra & scientific computing, aiming towards a good balance between speed and ease of use. The function syntax is deliberately similar to MATLAB. Useful for algorithm development directly in C++, or quick conversion of research code into production environments (eg. software & hardware products).

Changes:
  • faster handling of sparse matrices by kron() and repmat()
  • faster transpose of sparse matrices
  • faster element access in sparse matrices
  • faster row iterators for sparse matrices
  • faster handling of compound expressions by trace()
  • more efficient handling of aliasing in submatrix views
  • expanded normalise() to handle sparse matrices
  • expanded .transform() and .for_each() to handle sparse matrices
  • added reverse() for reversing order of elements
  • added repelem() for replicating elements
  • added roots() for finding the roots of a polynomial

Logo JMLR SHOGUN 4.0.0

by sonne - February 5, 2015, 09:09:37 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 146819 views, 21244 downloads, 6 subscriptions

Rating Whole StarWhole StarWhole StarEmpty StarEmpty Star
(based on 6 votes)

About: The SHOGUN machine learning toolbox's focus is on large scale learning methods with focus on Support Vector Machines (SVM), providing interfaces to python, octave, matlab, r and the command line.

Changes:

This release features the work of our 8 GSoC 2014 students [student; mentors]:

  • OpenCV Integration and Computer Vision Applications [Abhijeet Kislay; Kevin Hughes]
  • Large-Scale Multi-Label Classification [Abinash Panda; Thoralf Klein]
  • Large-scale structured prediction with approximate inference [Jiaolong Xu; Shell Hu]
  • Essential Deep Learning Modules [Khaled Nasr; Sergey Lisitsyn, Theofanis Karaletsos]
  • Fundamental Machine Learning: decision trees, kernel density estimation [Parijat Mazumdar ; Fernando Iglesias]
  • Shogun Missionary & Shogun in Education [Saurabh Mahindre; Heiko Strathmann]
  • Testing and Measuring Variable Interactions With Kernels [Soumyajit De; Dino Sejdinovic, Heiko Strathmann]
  • Variational Learning for Gaussian Processes [Wu Lin; Heiko Strathmann, Emtiyaz Khan]

It also contains several cleanups and bugfixes:

Features

  • New Shogun project description [Heiko Strathmann]
  • ID3 algorithm for decision tree learning [Parijat Mazumdar]
  • New modes for PCA matrix factorizations: SVD & EVD, in-place or reallocating [Parijat Mazumdar]
  • Add Neural Networks with linear, logistic and softmax neurons [Khaled Nasr]
  • Add kernel multiclass strategy examples in multiclass notebook [Saurabh Mahindre]
  • Add decision trees notebook containing examples for ID3 algorithm [Parijat Mazumdar]
  • Add sudoku recognizer ipython notebook [Alejandro Hernandez]
  • Add in-place subsets on features, labels, and custom kernels [Heiko Strathmann]
  • Add Principal Component Analysis notebook [Abhijeet Kislay]
  • Add Multiple Kernel Learning notebook [Saurabh Mahindre]
  • Add Multi-Label classes to enable Multi-Label classification [Thoralf Klein]
  • Add rectified linear neurons, dropout and max-norm regularization to neural networks [Khaled Nasr]
  • Add C4.5 algorithm for multiclass classification using decision trees [Parijat Mazumdar]
  • Add support for arbitrary acyclic graph-structured neural networks [Khaled Nasr]
  • Add CART algorithm for classification and regression using decision trees [Parijat Mazumdar]
  • Add CHAID algorithm for multiclass classification and regression using decision trees [Parijat Mazumdar]
  • Add Convolutional Neural Networks [Khaled Nasr]
  • Add Random Forests algorithm for ensemble learning using CART [Parijat Mazumdar]
  • Add Restricted Botlzmann Machines [Khaled Nasr]
  • Add Stochastic Gradient Boosting algorithm for ensemble learning [Parijat Mazumdar]
  • Add Deep contractive and denoising autoencoders [Khaled Nasr]
  • Add Deep belief networks [Khaled Nasr]

Bugfixes

  • Fix reference counting bugs in CList when reference counting is on [Heiko Strathmann, Thoralf Klein, lambday]
  • Fix memory problem in PCA::apply_to_feature_matrix [Parijat Mazumdar]
  • Fix crash in LeastAngleRegression for the case D greater than N [Parijat Mazumdar]
  • Fix memory violations in bundle method solvers [Thoralf Klein]
  • Fix fail in library_mldatahdf5.cpp example when http://mldata.org is not working properly [Parijat Mazumdar]
  • Fix memory leaks in Vowpal Wabbit, LibSVMFile and KernelPCA [Thoralf Klein]
  • Fix memory and control flow issues discovered by Coverity [Thoralf Klein]
  • Fix R modular interface SWIG typemap (Requires SWIG >= 2.0.5) [Matt Huska]

Cleanup and API Changes

  • PCA now depends on Eigen3 instead of LAPACK [Parijat Mazumdar]
  • Removing redundant and fixing implicit imports [Thoralf Klein]
  • Hide many methods from SWIG, reducing compile memory by 500MiB [Heiko Strathmann, Fernando Iglesias, Thoralf Klein]

Logo WEKA 3.9.2

by mhall - December 22, 2017, 03:39:19 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 85469 views, 19602 downloads, 5 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 6 votes)

About: The Weka workbench contains a collection of visualization tools and algorithms for data analysis and predictive modelling, together with graphical user interfaces for easy access to this [...]

Changes:

This release include a lot of bug fixes and improvements. Some of these are detailed at

http://jira.pentaho.com/projects/DATAMINING/issues/DATAMINING-771

As usual, for a complete list of changes refer to the changelogs.


Logo JMLR MLPACK 3.0.1

by rcurtin - May 11, 2018, 05:28:53 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 107711 views, 19343 downloads, 6 subscriptions

Rating Whole StarWhole StarWhole StarWhole Star1/2 Star
(based on 1 vote)

About: A fast, flexible C++ machine learning library, with bindings to other languages.

Changes:

Released May 10th, 2018.

  • Fix intermittently failing tests (#1387).
  • Add Big-Batch SGD (BBSGD) optimizer in src/mlpack/core/optimizers/bigbatch_sgd (#1131).
  • Fix simple compiler warnings (#1380, #1373).
  • Simplify NeighborSearch constructor and Train() overloads (#1378).
  • Add warning for OpenMP setting differences (#1358/#1382). When mlpack is compiled with OpenMP but another application linking against mlpack is not (or vice versa), a compilation warning will now be issued.
  • Restructured loss functions in src/mlpack/methods/ann/ (#1365).
  • Add environments for reinforcement learning tests (#1368, #1370, #1329).
  • Allow single outputs for multiple timestep inputs for recurrent neural networks (#1348).
  • Neural networks: add He and LeCun normal initializations (#1342), add FReLU and SELU activation functions (#1346, #1341), add alpha-dropout (#1349).

Logo MyMediaLite 3.10

by zenog - October 8, 2013, 22:29:29 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 104680 views, 18297 downloads, 1 subscription

About: MyMediaLite is a lightweight, multi-purpose library of recommender system algorithms.

Changes:

Mostly bug fixes.

For details see: https://github.com/zenogantner/MyMediaLite/blob/master/doc/Changes


Logo OpenOpt 0.54

by Dmitrey - June 15, 2014, 14:50:37 CET [ Project Homepage BibTeX Download ] 89985 views, 18251 downloads, 3 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 2 votes)

About: Universal Python-written numerical optimization toolbox. Problems: NLP, LP, QP, NSP, MILP, LSP, LLSP, MMP, GLP, SLE, MOP etc; general logical constraints, categorical variables, automatic differentiation, stochastic programming, interval analysis, many other goodies

Changes:

http://openopt.org/Changelog


Logo MLPY Machine Learning Py 3.5.0

by albanese - March 15, 2012, 09:52:41 CET [ Project Homepage BibTeX Download ] 94928 views, 16803 downloads, 2 subscriptions

Rating Whole StarWhole StarWhole Star1/2 StarEmpty Star
(based on 3 votes)

About: mlpy is a Python module for Machine Learning built on top of NumPy/SciPy and of GSL.

Changes:

New features:

  • LibSvm(): pred_probability() now returns probability estimates; pred_values() added
  • LibLinear(): pred_values() and pred_probability() added
  • dtw_std: squared Euclidean option added
  • LCS for series composed by real values (lcs_real()) added
  • Documentation

Fix:

  • wavelet submodule: cwt(): it returned only real values in morlet and poul
  • IRelief(): remove np. in learn()
  • fix rfe_kfda and rfe_w2 when p=1

Showing Items 1-10 of 674 on page 1 of 68: 1 2 3 4 5 6 Next Last