All entries.
Showing Items 61-70 of 623 on page 7 of 63: First Previous 2 3 4 5 6 7 8 9 10 11 12 Next Last

About: This MATLAB package provides the MLAPG algorithm proposed in our ICCV 2015 paper. It is efficient for PSD constrained metric learning, and also effective for person re-identification. For more details, please visit http://www.cbsr.ia.ac.cn/users/scliao/projects/mlapg/.

Changes:

Initial Announcement on mloss.org.


Logo A Pattern Recognizer In Lua with ANNs v0.4.1

by pakozm - December 3, 2015, 15:01:36 CET [ Project Homepage BibTeX Download ] 7813 views, 1758 downloads, 2 subscriptions

About: APRIL-ANN toolkit (A Pattern Recognizer In Lua with Artificial Neural Networks). This toolkit incorporates ANN algorithms (as dropout, stacked denoising auto-encoders, convolutional neural networks), with other pattern recognition methods as hidden makov models (HMMs) among others.

Changes:
  • Updated home repository link to follow april-org github organization.
  • Improved serialize/deserialize functions, reimplemented all the serialization procedure.
  • Added exceptions support to LuaPkg and APRIL-ANN, allowing to capture C++ errors into Lua code.
  • Added set class.
  • Added series class.
  • Added data_frame class, similar to Python Pandas DataFrame.
  • Serialization and deserilization have been updated with more robust and reusable API, implemented in util.serialize() and util.deserialize() functions.
  • Added matrix.ext.broadcast utility (similar to broadcast in numpy).
  • Added ProbablisitcMatrixANNComponent, which allow to implement probabilistic mixtures of posteriors and/or likelihoods.
  • Added batch normalization ANN component.
  • Allowing matrix.join to add new axis.
  • Added methods prod(), cumsum() and cumprod() at matrix classes.
  • Added methods count_eq() and count_neq() at matrix classes.
  • Serializable objects API have been augmented with methods ctor_name() and
    ctor_params() in Lua, refered to luaCtorName() and luaCtorParams() in C++.
  • Added cast.to to dynamic cast C++ objects pushed into Lua, allowing to convert base class objects into any of its derived classes.
  • Added matrix.sparse as valid values for targets in ann.loss.mse and
    ann.loss.cross_entropy.
  • Changed matrix metamethods __index and __newindex, allowing to use
    matrix objects with standard Lua operator[].
  • Added matrix.masked_fill and matrix.masked_copy matrix.
  • Added matrix.indexed_fill and matrix.indexed_copy matrix.
  • Added ann.components.probabilistic_matrix, and its corresponding specializations ann.components.left_probabilistic_matrix and
    ann.components.right_probabilistic_matrix.
  • Added operator[] in the right side of matrix operations.
  • Added ann.components.transpose.
  • Added max_gradients_norm in traianble.supervised_trainer, to avoid gradients exploding.
  • Added ann.components.actf.sparse_logistic a logistic activation function with sparsity penalty.
  • Simplified math.add, math.sub, ... and other math extensions for reductions, their original behavior can be emulated by using bind function.
  • Added bind function to freeze any positional argument of any Lua function.
  • Function stats.boot uses multiple_unpack to allow a table of sizes and the generation of multiple index matrices.
  • Added multiple_unpack Lua function.
  • Added __tostring metamethod to numeric memory blocks in Lua.
  • Added dataset.token.sparse_matrix, a dataset which allow to traverse by rows a sparse matrix instance.
  • Added matrix.sparse.builders.dok, a builder which uses the Dictionary-of-Keys format to construct a sparse matrix from scratch.
  • Added method data to numeric matrix classes.
  • Added methods values, indices, first_index to sparse matrix class.
  • Fixed bugs when reading bad formed CSV files.
  • Fixed bugs at statistical distributions.
  • FloatRGB bug solved on equal (+=, -=, ...) operators. This bug affected ImageRGB operations such as resize.
  • Solved problems when chaining methods in Lua, some objects end to be garbage collected.
  • Improved support of strings in auto-completion (rlcompleter package).
  • Solved bug at SparseMatrix<T> when reading it from a file.
  • Solved bug in Image<T>::rotate90_cw methods.
  • Solved bug in SparseMatrix::toDense() method.

C/C++

  • Better LuaTable accessors, using [] operator.
  • Implementation of matrix __index, __newindex and __call metamethods in C++.
  • Implementation of matProd(), matCumSum() and matCumProd() functions.
  • Implementation of matCountEq() and matCountNeq() functions for
    Matrix<T>.
  • Updated matrix_ext_operations.h to change API of matrix operations. All functions have been overloaded to accept an in-place operation and another version which receives a destination matrix.
  • Adding iterators to language models.
  • Added MatrixScalarMap2 which receives as input2 a SparaseMatrix instance. This functions needs to be generalized to work with CPU and CUDA.
  • The method SparseMatrix<T>::fromDenseMatrix() uses a DOKBuilder object to build the sparse matrix.
  • The conversion of a Matrix<T> into a SparseMatrix<T> has been changed from a constructor overload to the static method
    SparseMatrix<T>::fromDenseMatrix().
  • Added support for IPyLua.
  • Optimized matrix access for confusion matrix.
  • Minor changes in class.lua.
  • Improved binding to avoid multiple object copies when pushing C++ objects.
  • Added Git commit hash and compilation time.

Logo PROFET 1.0.0

by Hamda - November 26, 2015, 13:20:28 CET [ Project Homepage BibTeX Download ] 1142 views, 315 downloads, 2 subscriptions

About: Software for Automatic Construction and Inference of DBNs Based on Mathematical Models

Changes:

Initial Announcement on mloss.org.


Logo A Library for Online Streaming Feature Selection 1.0

by ykui713 - November 25, 2015, 13:23:01 CET [ BibTeX Download ] 917 views, 359 downloads, 1 subscription

About: LOFS is a software toolbox for online streaming feature selection

Changes:

Initial Announcement on mloss.org.


Logo PyScriptClassifier 0.3.0

by cjb60 - November 25, 2015, 04:07:51 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 2526 views, 640 downloads, 2 subscriptions

About: Easily prototype WEKA classifiers and filters using Python scripts.

Changes:

0.3.0

  • Filters have now been implemented.
  • Classifier and filter classes satisfy base unit tests.

0.2.1

  • Can now choose to save the script in the model using the -save flag.

0.2.0

  • Added Python 3 support.
  • Added uses decorator to prevent non-essential arguments from being passed.
  • Fixed nasty bug where imputation, binarisation, and standardisation would not actually be applied to test instances.
  • GUI in WEKA now displays the exception as well.
  • Fixed bug where single quotes in attribute values could mess up args creation.
  • ArffToPickle now recognises class index option and arguments.
  • Fix nasty bug where filters were not being saved and were made from scratch from test data.

0.1.1

  • ArffToArgs gets temporary folder in a platform-independent way, instead of assuming /tmp/.
  • Can now save args in ArffToPickle using save.

0.1.0

  • Initial release.

Logo bandicoot 0.4

by yvesalexandre - November 20, 2015, 17:08:31 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 1370 views, 293 downloads, 2 subscriptions

About: An open-source Python toolbox to analyze mobile phone metadata.

Changes:

Initial Announcement on mloss.org.


Logo Deep Semantic Ranking Based Hashing 1.0

by openpr_nlpr - November 18, 2015, 07:25:16 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 1408 views, 270 downloads, 3 subscriptions

About: This algorithm is described in Deep Semantic Ranking Based Hashing for Multi-Label Image Retrieval. See https://github.com/zhaofang0627/cuda-convnet-for-hashing

Changes:

Initial Announcement on mloss.org.


Logo Hype 0.1.0

by gbaydin - November 16, 2015, 18:35:57 CET [ Project Homepage BibTeX Download ] 1084 views, 281 downloads, 3 subscriptions

About: Hype is a proof-of-concept deep learning library, where you can perform optimization on compositional machine learning systems of many components, even when such components themselves internally perform optimization.

Changes:

Initial Announcement on mloss.org.


About: Efficient and Flexible Distributed/Mobile Deep Learning Framework, for python, R, Julia and more

Changes:

This version comes with Distributed and Mobile Examples


Logo Probabilistic Classification Vector Machine 0.22

by fmschleif - November 10, 2015, 13:16:19 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 5470 views, 1194 downloads, 3 subscriptions

About: PCVM library a c++/armadillo implementation of the Probabilistic Classification Vector Machine.

Changes:

30.10.2015 * code has been revised in some places fixing also some errors different multiclass schemes and hdf5 file support added. Some speed ups and memory savings by better handling of intermediate objects.

27.05.2015: - Matlab binding under Windows available. Added a solution file for VS'2013 express to compile a matlab mex binding. Can not yet confirm that under windows the code is really using multiple cores (under linux it does)

29.04.2015 * added an implementation of the Nystroem based PCVM includes: Nystroem based singular value decomposition (SVD), eigenvalue decomposition (EVD) and pseudo-inverse calculation (PINV)

22.04.2015 * implementation of the PCVM released


Showing Items 61-70 of 623 on page 7 of 63: First Previous 2 3 4 5 6 7 8 9 10 11 12 Next Last