All entries.
Showing Items 51-60 of 536 on page 6 of 54: Previous 1 2 3 4 5 6 7 8 9 10 11 Next Last

Logo r-cran-bst 0.3-4

by r-cran-robot - May 8, 2014, 00:00:00 CET [ Project Homepage BibTeX Download ] 1257 views, 271 downloads, 0 subscriptions

About: Gradient Boosting

Changes:

Fetched by r-cran-robot on 2014-08-01 00:00:04.045465


Logo peewit 0.10

by lorenz - May 7, 2014, 16:04:18 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 15121 views, 2986 downloads, 1 subscription

About: peewit provides services for programming, running and result examination of machine learning experiments. It does not include any ML algorithms, has no GUI, and presumes certain uniformity of the experimental layout. But it does not make assumptions on the type of task under study. The current version-number is 0.10.

Changes:

v-cube with side-cubes


Logo PredictionIO 0.7.0

by simonc - April 29, 2014, 20:59:57 CET [ Project Homepage BibTeX Download ] 4902 views, 928 downloads, 2 subscriptions

About: Open Source Machine Learning Server

Changes:
  • Single machine version for small-to-medium scale deployments
  • Integrated GraphChi (disk-based large-scale graph computation) and algorithms: ALS, CCD++, SGD, CLiMF
  • Improved runtime for training and offline evaluation
  • Bug fixes

See release notes - https://predictionio.atlassian.net/secure/ReleaseNote.jspa?projectId=10000&version=11801


Logo RFD 1.0

by openpr_nlpr - April 28, 2014, 10:34:57 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 630 views, 125 downloads, 1 subscription

About: This is an unoptimized implementation of the RFD binary descriptor, which is published in the following paper. B. Fan, et al. Receptive Fields Selection for Binary Feature Description. IEEE Transaction on Image Processing, 2014. doi: http://dx.doi.org/10.1109/TIP.2014.2317981

Changes:

Initial Announcement on mloss.org.


About: RLLib is a lightweight C++ template library that implements incremental, standard, and gradient temporal-difference learning algorithms in Reinforcement Learning. It is an optimized library for robotic applications and embedded devices that operates under fast duty cycles (e.g., < 30 ms). RLLib has been tested and evaluated on RoboCup 3D soccer simulation agents, physical NAO V4 humanoid robots, and Tiva C series launchpad microcontrollers to predict, control, learn behaviors, and represent learnable knowledge. The implementation of the RLLib library is inspired by the RLPark API, which is a library of temporal-difference learning algorithms written in Java.

Changes:

Current release version is v2.0.


Logo WEKA 3.7.11

by mhall - April 24, 2014, 10:13:12 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 37832 views, 5412 downloads, 2 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 6 votes)

About: The Weka workbench contains a collection of visualization tools and algorithms for data analysis and predictive modelling, together with graphical user interfaces for easy access to this [...]

Changes:

In core weka:

  • Bagging and RandomForest are now faster if the base learner is a WeightedInstancesHandler
  • Speed-ups for REPTree and other classes that use entropy calculations
  • Many other code improvements and speed-ups
  • Additional statistics available in the output of LinearRegression and SimpleLinearRegression. Contributed by Chris Meyer
  • Reduced memory consumption in BayesNet
  • Improvements to the package manager: load status of individual packages can now be toggled to prevent a package from loading; "Available" button now displays the latest version of all available packages that are compatible with the base version of Weka
  • RandomizableFilteredClassifier
  • Canopy clusterer
  • ImageViewer KnowledgeFlow component
  • PMML export support for Logistic. Infrastructure and changes contributed by David Person
  • Extensive tool-tips now displayed in the Explorer's scheme selector tree lists
  • Join KnowledgeFlow component for performing an inner join on two incoming streams/data sets

In packages:

  • IWSSembeded package, contributed by Pablo Bermejo
  • CVAttributeEval package, contributed by Justin Liang
  • distributedWeka package for Hadoop
  • Improvements to multiLayerPerceptrons and addtion of MLPAutoencoder
  • Code clean-up in many packages

Logo libstb 1.8

by wbuntine - April 24, 2014, 09:02:17 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 4222 views, 809 downloads, 1 subscription

About: Generalised Stirling Numbers for Pitman-Yor Processes: this library provides ways of computing generalised 2nd-order Stirling numbers for Pitman-Yor and Dirichlet processes. Included is a tester and parameter optimiser. This accompanies Buntine and Hutter's article: http://arxiv.org/abs/1007.0296, and a series of papers by Buntine and students at NICTA and ANU.

Changes:

Moved repository to GitHub, and added thread support to use the main table lookups in multi-threaded code.


Logo libAGF 0.9.7

by Petey - April 15, 2014, 04:55:41 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 7518 views, 1513 downloads, 1 subscription

About: C++ software for statistical classification, probability estimation and interpolation/non-linear regression using variable bandwidth kernel estimation.

Changes:

New in Version 0.9.7:

  • multi-class classification generalizes class-borders algorithm using a recursive control language
  • hierarchical clustering
  • improved pre-processing

Logo GradMC 2.00

by tur - April 14, 2014, 15:48:48 CET [ BibTeX Download ] 1402 views, 489 downloads, 1 subscription

About: GradMC is an algorithm for MR motion artifact removal implemented in Matlab

Changes:

Added support for multi-rigid motion correction.


Logo Somoclu 1.3.1

by peterwittek - April 10, 2014, 06:41:38 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 3060 views, 586 downloads, 2 subscriptions

About: Somoclu is a massively parallel implementation of self-organizing maps. It relies on OpenMP for multicore execution, MPI for distributing the workload, and it can be accelerated by CUDA on a GPU cluster. A sparse kernel is also included, which is useful for training maps on vector spaces generated in text mining processes.

Changes:
  • Initial Windows support through GCC on Windows.
  • Better I/O separation for the Python, R, and MATLAB interfaces.
  • Bug fixes: major MPI initialization bug fixed.

Showing Items 51-60 of 536 on page 6 of 54: Previous 1 2 3 4 5 6 7 8 9 10 11 Next Last