All entries.
Showing Items 41-50 of 519 on page 5 of 52: Previous 1 2 3 4 5 6 7 8 9 10 Next Last

Logo ELKI 0.6.0

by erich - January 10, 2014, 18:32:28 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 8023 views, 1500 downloads, 3 subscriptions

About: ELKI is a framework for implementing data-mining algorithms with support for index structures, that includes a wide variety of clustering and outlier detection methods.

Changes:

Additions and Improvements from ELKI 0.5.5:

Algorithms

Clustering:

  • Hierarchical Clustering - the slower naive variants were added, and the code was refactored
  • Partition extraction from hierarchical clusterings - different linkage strategies (e.g. Ward)
  • Canopy pre-Clustering
  • Naive Mean-Shift Clustering
  • Affinity propagation clustering (both with distances and similarities / kernel functions)
  • K-means variations: Best-of-multiple-runs, bisecting k-means
  • New k-means initialization: farthest points, sample initialization
  • Cheng and Church Biclustering
  • P3C Subspace Clustering
  • One-dimensional clustering algorithm based on kernel density estimation

Outlier detection

  • COP - correlation outlier probabilities
  • LDF - a kernel density based LOF variant
  • Simplified LOF - a simpler version of LOF (not using reachability distance)
  • Simple Kernel Density LOF - a simple LOF using kernel density (more consistent than LDF)
  • Simple outlier ensemble algorithm
  • PINN - projection indexed nearest neighbors, via projected indexes.
  • ODIN - kNN graph based outlier detection
  • DWOF - Dynamic-Window Outlier Factor (contributed by Omar Yousry)
  • ABOD refactored, into ABOD, FastABOD and LBABOD

Distances

  • Geodetic distances now support different world models (WGS84 etc.) and are subtantially faster.
  • Levenshtein distances for processing strings, e.g. for analyzing phonemes (contributed code, see "Word segmentation through cross-lingual word-to-phoneme alignment", SLT2013, Stahlberg et al.)
  • Bray-Curtis, Clark, Kulczynski1 and Lorentzian distances with R-tree indexing support
  • Histogram matching distances
  • Probabilistic divergence distances (Jeffrey, Jensen-Shannon, Chi2, Kullback-Leibler)
  • Kulczynski2 similarity
  • Kernel similarity code has been refactored, and additional kernel functions have been added

Database Layer and Data Types

Projection layer * Parser for simple textual data (for use with Levenshtein distance) Various random projection families (including Feature Bagging, Achlioptas, and p-stable) Latitude+Longitude to ECEF Sparse vector improvements and bug fixes New filter: remove NaN values and missing values New filter: add histogram-based jitter New filter: normalize using statistical distributions New filter: robust standardization using Median and MAD New filter: Linear discriminant analysis (LDA)

Index Layer

  • Another speed up in R-trees
  • Refactoring of M- and R-trees: Support for different strategies in M-tree New strategies for M-tree splits Speedups in M-tree
  • New index structure: in-memory k-d-tree
  • New index structure: in-memory Locality Sensitive Hashing (LSH)
  • New index structure: approximate projected indexes, such as PINN
  • Index support for geodetic data - (Details: Geodetic Distance Queries on R-Trees for Indexing Geographic Data, SSTD13)
  • Sampled k nearest neighbors: reference KDD13 "Subsampling for Efficient and Effective Unsupervised Outlier Detection Ensembles"
  • Cached (precomputed) k-nearest neighbors to share across multiple runs
  • Benchmarking "algorithms" for indexes

Mathematics and Statistics

  • Many new distributions have been added, now 28 different distributions are supported
  • Additional estimation methods (using advanced statistics such as L-Moments), now 44 estimators are available
  • Trimming and Winsorizing
  • Automatic best-fit distribution estimation
  • Preprocessor using these distributions for rescaling data sets
  • API changes related to the new distributions support
  • More kernel density functions
  • RANSAC covariance matrix builder (unfortunately rather slow)

Visualization

  • 3D projected coordinates (Details: Interactive Data Mining with 3D-Parallel-Coordinate-Trees, SIGMOD2013)
  • Convex hulls now also include nested hierarchical clusters

Other

  • Parser speedups
  • Sparse vector bug fixes and improvements
  • Various bug fixes
  • PCA, MDS and LDA filters
  • Text output was slightly improved (but still needs to be redesigned from scratch - please contribute!)
  • Refactoring of hierarchy classes
  • New heap classes and infrastructure enhancements
  • Classes can have aliases, e.g. "l2" for euclidean distance.
  • Some error messages were made more informative.
  • Benchmarking classes, also for approximate nearest neighbor search.

Logo JMLR Darwin 1.7

by sgould - January 10, 2014, 01:33:01 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 22734 views, 4833 downloads, 2 subscriptions

About: A platform-independent C++ framework for machine learning, graphical models, and computer vision research and development.

Changes:

Version 1.7:

  • Log file now shows the command line
  • Utility application added for viewing multi-class segmentation legend
  • Added LBP filter response features to multi-class segmentation model
  • Added drwnColourHistogram class
  • Added k-means segmentation method for creating superpixels
  • Application visualizeSuperpixels and mex routines for loading and saving superpixels
  • Improved mex parsing of Matlab objects to support more matrix types
  • Bug fix in drwnOptimizer (thanks to Subarna Tripathi)
  • Updated copyright notice to 2007-2014
  • Other bug fixes and performance improvements

Version 1.6.1:

  • Maximum size of drwnShowDebuggingImage can be set from command line
  • Windows MSVC projects updated to link against OpenCV 2.4.6
  • Fixes for gcc 4.7 (thanks to Sarma Tangirala)
  • Bug fixes and performance improvements

Version 1.6:

  • Changed vision code from OpenCV 1.x C API to OpenCV 2.x C++ API
  • Added drwnHistogram class by Jason Corso
  • Added separate EPSG, EPSF and EPSX parameters to drwnOptimizer and changed signature of solve function
  • Added "-outUnary" option to inferPixelLabels for writing out unary potentials
  • Improved Matlab mex interfaces
  • Added drwnFeatureTransformFactory and improved drwnFactory class
  • Added drwnLinearTransform class
  • Bug fixes and performance improvements

Logo A Pattern Recognizer In Lua with ANNs v0.3.1-alpha

by pakozm - January 9, 2014, 22:09:03 CET [ Project Homepage BibTeX Download ] 1063 views, 269 downloads, 1 subscription

About: April-ANN toolkit (A Pattern Recognizer In Lua with Artificial Neural Networks). This toolkit incorporates ANN algorithms (as dropout, stacked denoising auto-encoders, convolutional neural networks), with other pattern recognition methods as hiddem makov models (HMMs) among others.

Changes:

Added automatic differentiation package. Removed some bugs and memory leaks. Better decouplong between ANN modules, optimizer objects and loss functions. Addition of Conjugate Gradient, Rprop and Quickprop algorithms.


Logo JMLR MLPACK 1.0.8

by rcurtin - January 7, 2014, 05:47:22 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 27568 views, 5523 downloads, 5 subscriptions

Rating Whole StarWhole StarWhole StarWhole Star1/2 Star
(based on 1 vote)

About: A scalable, fast C++ machine learning library, with emphasis on usability.

Changes:
  • Memory leak in NeighborSearch index-mapping code fixed.
  • GMMs can be trained using the existing model as a starting point by specifying an additional boolean parameter to GMM::Estimate().
  • Logistic regression implementation added in methods/logistic_regression.
  • Version information is now obtainable via mlpack::util::GetVersion() or the _MLPACKVERSION_MAJOR, _MLPACKVERSION_MINOR, and _MLPACKVERSION_PATCH macros.
  • Fix typos in allkfn and allkrann output.

Logo AIDE 0.2

by khalili - January 3, 2014, 18:01:06 CET [ Project Homepage BibTeX Download ] 518 views, 106 downloads, 1 subscription

About: AIDE (Automata Identification Engine) is a free open source tool for automata inference algorithms developed in C# .Net.

Changes:

Initial Announcement on mloss.org.


Logo learning coupled feature spaces for cross modal matching 1.0

by openpr_nlpr - December 30, 2013, 10:15:46 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 489 views, 75 downloads, 1 subscription

About: Kaiye Wang, Ran He, Wei Wang, Liang Wang, Tiuniu Tan. Learning Coupled Feature Spaces for Cross-modal Matching. In ICCV, 2013.

Changes:

Initial Announcement on mloss.org.


Logo hapFabia 1.4.2

by hochreit - December 28, 2013, 17:24:29 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 1431 views, 297 downloads, 1 subscription

About: hapFabia is an R package for identification of very short segments of identity by descent (IBD) characterized by rare variants in large sequencing data. It detects 100 times smaller segments than previous methods.

Changes:

o citation update

o plot function improved


About: hapFabia is an R package for identification of very short segments of identity by descent (IBD) characterized by rare variants in large sequencing data.

Changes:

o citation update

o plot function improved


Logo Harry 0.1

by konrad - December 28, 2013, 12:34:47 CET [ Project Homepage BibTeX Download ] 429 views, 86 downloads, 1 subscription

About: A Tool for Measuring String Similarity

Changes:

Initial Announcement on mloss.org.


Logo JMLR Sally 0.8.2

by konrad - December 25, 2013, 13:38:59 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 16203 views, 3252 downloads, 2 subscriptions

About: A Tool for Embedding Strings in Vector Spaces

Changes:

Support for new version of libarchive. Several major and minor bug fixes.


Showing Items 41-50 of 519 on page 5 of 52: Previous 1 2 3 4 5 6 7 8 9 10 Next Last