All entries.
Showing Items 31-40 of 565 on page 4 of 57: Previous 1 2 3 4 5 6 7 8 9 Next Last

Logo python weka wrapper 0.2.2

by fracpete - January 5, 2015, 03:43:56 CET [ Project Homepage BibTeX Download ] 9147 views, 1903 downloads, 3 subscriptions

About: A thin Python wrapper that uses the javabridge Python library to communicate with a Java Virtual Machine executing Weka API calls.

Changes:
  • added convenience methods "no_class" (to unset class) and "has_class" (class set?) to "Instances" class
  • switched to using faster method objects for methods "classify_instance"/"distribution_for_instance" in "Classifier" class
  • switched to using faster method objects for methods "cluster_instance"/"distribution_for_instance" in "Clusterer" class
  • switched to using faster method objects for methods "class_index", "is_missing", "get/set_value", "get/set_string_value", "weight" in "Instance" class
  • switched to using faster method objects for methods "input", "output", "outputformat" in "Filter" class
  • switched to using faster method objects for methods "attribute", "attribute_by_name", "num_attributes", "num_instances", "class_index", "class_attribute", "set_instance", "get_instance", "add_instance" in "Instances" class

Logo JEMLA 1.0

by bathaeian - January 4, 2015, 08:34:49 CET [ Project Homepage BibTeX Download ] 396 views, 99 downloads, 2 subscriptions

About: Java package for calculating Entropy for Machine Learning Applications

Changes:

An initial user guide is ready now. Please download that at the homepage of project: http://profs.basu.ac.ir/bathaeian/free_space JEMLA is now on the GitHub too: https://github.com/bathaeian/JEMLA


Logo r-cran-caret 6.0-41

by r-cran-robot - January 2, 2015, 00:00:00 CET [ Project Homepage BibTeX Download ] 62302 views, 13016 downloads, 1 subscription

About: Classification and Regression Training

Changes:

Fetched by r-cran-robot on 2015-02-01 00:00:04.630083


Logo ADAMS 0.4.7

by fracpete - December 24, 2014, 02:57:41 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 9135 views, 2116 downloads, 2 subscriptions

About: The Advanced Data mining And Machine learning System (ADAMS) is a novel, flexible workflow engine aimed at quickly building and maintaining real-world, complex knowledge workflows.

Changes:
  • 51 new actors
  • 16 new conversions
  • new module adams-jooq: code generation from JDBC databases for typed access
  • new module adams-image-webservice: allows upload of images using webservice
  • adams-timeseries module extended
  • adams-spreadsheet module extended
  • adams-random module extended
  • adams-imaging module overhaul

Logo WEKA 3.7.12

by mhall - December 17, 2014, 03:04:17 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 43391 views, 6453 downloads, 3 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 6 votes)

About: The Weka workbench contains a collection of visualization tools and algorithms for data analysis and predictive modelling, together with graphical user interfaces for easy access to this [...]

Changes:

In core weka:

  • GUIChooser now has a plugin exension point that allows implementations of GUIChooser.GUIChooserMenuPlugin to appear as entries in either the Tools or Visualization menus
  • SubsetByExpression filter now has support for regexp matching
  • weka.classifiers.IterativeClassifierOptimizer - a classifier that can efficiently optimize the number of iterations for a base classifier that implements IterativeClassifier
  • Speedup for LogitBoost in the two class case
  • weka.filters.supervised.instance.ClassBalancer - a simple filter to balance the weight of classes
  • New class hierarchy for stopwords algorithms. Includes new methods to read custom stopwords from a file and apply multiple stopwords algorithms
  • Ability to turn off capabilities checking in Weka algorithms. Improves runtime for ensemble methods that create a lot of simple base classifiers
  • Memory savings in weka.core.Attribute
  • Improvements in runtime for SimpleKMeans and EM
  • weka.estimators.UnivariateMixtureEstimator - new mixture estimator

In packages:

  • New discriminantAnalysis package. Provides an implementation of Fisher's linear discriminant analysis
  • Quartile estimators, correlation matrix heat map and k-means++ clustering in distributed Weka
  • Support for default settings for GridSearch via a properties file
  • Improvements in scripting with addition of the offical Groovy console (kfGroovy package) from the Groovy project and TigerJython (new tigerjython package) as the Jython console via the GUIChooser
  • Support for the latest version of MLR in the RPlugin package
  • EAR4 package contributed by Vahid Jalali
  • StudentFilters package contributed by Chris Gearhart
  • graphgram package contributed by Johannes Schneider

Logo JMLR JKernelMachines 2.5

by dpicard - December 11, 2014, 17:51:42 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 15495 views, 3714 downloads, 4 subscriptions

Rating Whole StarWhole StarWhole StarWhole Star1/2 Star
(based on 4 votes)

About: machine learning library in java for easy development of new kernels

Changes:

Version 2.5

  • New active learning algorithms
  • Better threading management
  • New multiclass SVM algorithm based on SDCA
  • Handle class balancing in cross-validation
  • Optional support of EJML switch to version 0.26
  • Various bugfixes and improvements

Logo APCluster 1.4.1

by UBod - December 10, 2014, 12:58:29 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 19929 views, 3612 downloads, 3 subscriptions

Rating Whole StarWhole StarWhole StarWhole Star1/2 Star
(based on 2 votes)

About: The apcluster package implements Frey's and Dueck's Affinity Propagation clustering in R. The package further provides leveraged affinity propagation, exemplar-based agglomerative clustering, and various tools for visual analysis of clustering results.

Changes:
  • fixes in C++ code of sparse affinity propagation

Logo Accord.NET Framework 2.14.0

by cesarsouza - December 9, 2014, 23:04:04 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 18234 views, 3747 downloads, 2 subscriptions

About: The Accord.NET Framework is a .NET machine learning framework combined with audio and image processing libraries completely written in C#. It is a complete framework for building production-grade computer vision, computer audition, signal processing and statistics applications even for commercial use. A comprehensive set of sample applications provide a fast start to get up and running quickly, and an extensive online documentation helps fill in the details.

Changes:

Adding a large number of new distributions, such as Anderson-Daring, Shapiro-Wilk, Inverse Chi-Square, Lévy, Folded Normal, Shifted Log-Logistic, Kumaraswamy, Trapezoidal, U-quadratic and BetaPrime distributions, Birnbaum-Saunders, Generalized Normal, Gumbel, Power Lognormal, Power Normal, Triangular, Tukey Lambda, Logistic, Hyperbolic Secant, Degenerate and General Continuous distributions.

Other additions include new statistical hypothesis tests such as Anderson-Daring and Shapiro-Wilk; as well as support for all of LIBLINEAR's support vector machine algorithms; and format reading support for MATLAB/Octave matrices, LibSVM models, sparse LibSVM data files, and many others.

For a complete list of changes, please see the full release notes at the release details page at:

https://github.com/accord-net/framework/releases


Logo JMLR GPML Gaussian Processes for Machine Learning Toolbox 3.5

by hn - December 8, 2014, 13:54:38 CET [ Project Homepage BibTeX Download ] 21906 views, 5098 downloads, 3 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarWhole Star
(based on 2 votes)

About: The GPML toolbox is a flexible and generic Octave 3.2.x and Matlab 7.x implementation of inference and prediction in Gaussian Process (GP) models.

Changes:
  • mechanism for specifying hyperparameter priors (together with Roman Garnett and José Vallet)
  • new inference method inf/infGrid allowing efficient inference for data defined on a Cartesian grid (together with Andrew Wilson)
  • new mean/cov functions for preference learning: meanPref/covPref
  • new mean/cov functions for non-vectorial data: meanDiscrete/covDiscrete
  • new piecewise constant nearest neighbor mean function: meanNN
  • new mean functions being predictions from GPs: meanGP and meanGPexact
  • new covariance function for standard additive noise: covEye
  • new covariance function for factor analysis: covSEfact
  • new covariance function with varying length scale : covSEvlen
  • make covScale more general to scaling with a function instead of a scalar
  • bugfix in covGabor* and covSM (due to Andrew Gordon Wilson)
  • bugfix in lik/likBeta.m (suggested by Dali Wei)
  • bugfix in solve_chol.c (due to Todd Small)
  • bugfix in FITC inference mode (due to Joris Mooij) where the wrong mode for post.L was chosen when using infFITC and post.L being a diagonal matrix
  • bugfix in infVB marginal likelihood for likLogistic with nonzero mean function (reported by James Lloyd)
  • removed the combination likErf/infVB as it yields a bad posterior approximation and lacks theoretical justification
  • Matlab and Octave compilation for L-BFGS-B v2.4 and the more recent L-BFGS-B v3.0 (contributed by José Vallet)
  • smaller bugfixes in gp.m (due to Joris Mooij and Ernst Kloppenburg)
  • bugfix in lik/likBeta.m (due to Dali Wei)
  • updated use of logphi in lik/likErf
  • bugfix in util/solve_chol.c where a typing issue occured on OS X (due to Todd Small)
  • bugfix due to Bjørn Sand Jensen noticing that cov_deriv_sq_dist.m was missing in the distribution
  • bugfix in infFITC_EP for ttau->inf (suggested by Ryan Turner)

Logo r-cran-arules 1.1-6

by r-cran-robot - December 7, 2014, 00:00:00 CET [ Project Homepage BibTeX Download ] 17071 views, 3558 downloads, 3 subscriptions

About: Mining Association Rules and Frequent Itemsets

Changes:

Fetched by r-cran-robot on 2015-02-01 00:00:04.061768


Showing Items 31-40 of 565 on page 4 of 57: Previous 1 2 3 4 5 6 7 8 9 Next Last