All entries.
Showing Items 31-40 of 540 on page 4 of 54: Previous 1 2 3 4 5 6 7 8 9 Next Last

Logo JMLR JKernelMachines 2.4

by dpicard - July 24, 2014, 13:51:44 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 12364 views, 3119 downloads, 2 subscriptions

Rating Whole StarWhole Star1/2 StarEmpty StarEmpty Star
(based on 1 vote)

About: machine learning library in java for easy development of new kernels

Changes:

Version 2.4

  • Added a simple GUI to rapidly test some algorithms
  • New Active Learning package
  • New algorithms (LLSVM, KMeans)
  • New Kernels (Polynomials, component wise)
  • Many bugfixes and improvements to existing algorithms
  • Many optimization

The number of changes in this version is massive, test it! Don't forget to report any regression.


Logo Optunity 0.2.0

by claesenm - July 24, 2014, 10:07:54 CET [ Project Homepage BibTeX Download ] 502 views, 160 downloads, 1 subscription

About: Optunity is a library containing various optimizers for hyperparameter tuning. Hyperparameter tuning is a recurrent problem in many machine learning tasks, both supervised and unsupervised.This package provides several distinct approaches to solve such problems including some helpful facilities such as cross-validation and a plethora of score functions.

Changes:

Initial Announcement on mloss.org.


Logo JMLR GPstuff 4.5

by avehtari - July 22, 2014, 14:03:11 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 14172 views, 3516 downloads, 2 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarWhole Star
(based on 1 vote)

About: The GPstuff toolbox is a versatile collection of Gaussian process models and computational tools required for inference. The tools include, among others, various inference methods, sparse approximations and model assessment methods.

Changes:

2014-07-22 Version 4.5

New features

  • Input dependent noise and signal variance.

    • Tolvanen, V., Jylänki, P. and Vehtari, A. (2014). Expectation Propagation for Nonstationary Heteroscedastic Gaussian Process Regression. In Proceedings of IEEE International Workshop on Machine Learning for Signal Processing, accepted for publication. Preprint http://arxiv.org/abs/1404.5443
  • Sparse stochastic variational inference model.

    • Hensman, J., Fusi, N. and Lawrence, N. D. (2013). Gaussian processes for big data. arXiv preprint http://arxiv.org/abs/1309.6835.
  • Option 'autoscale' in the gp_rnd.m to get split normal approximated samples from the posterior predictive distribution of the latent variable.

    • Geweke, J. (1989). Bayesian Inference in Econometric Models Using Monte Carlo Integration. Econometrica, 57(6):1317-1339.

    • Villani, M. and Larsson, R. (2006). The Multivariate Split Normal Distribution and Asymmetric Principal Components Analysis. Communications in Statistics - Theory and Methods, 35(6):1123-1140.

Improvements

  • New unit test environment using the Matlab built-in test framework (the old Xunit package is still also supported).
  • Precomputed demo results (including the figures) are now available in the folder tests/realValues.
  • New demos demonstrating new features etc.
    • demo_epinf, demonstrating the input dependent noise and signal variance model
    • demo_svi_regression, demo_svi_classification
    • demo_modelcomparison2, demo_survival_comparison

Several minor bugfixes


Logo JMLR Waffles 2014-07-05

by mgashler - July 20, 2014, 04:53:54 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 24134 views, 7102 downloads, 2 subscriptions

About: Script-friendly command-line tools for machine learning and data mining tasks. (The command-line tools wrap functionality from a public domain C++ class library.)

Changes:

Added support for CUDA GPU-parallelized neural network layers, and several other new features. Full list of changes at http://waffles.sourceforge.net/docs/changelog.html


Logo Crino 1.0.0

by jlerouge - July 16, 2014, 17:54:55 CET [ Project Homepage BibTeX Download ] 617 views, 136 downloads, 2 subscriptions

About: Crino: a neural-network library based on Theano

Changes:

1.0.0 (7 july 2014) : - Initial release of crino - Implements a torch-like library to build artificial neural networks (ANN) - Provides standard implementations for : * auto-encoders * multi-layer perceptrons (MLP) * deep neural networks (DNN) * input output deep architecture (IODA) - Provides a batch-gradient backpropagation algorithm, with adaptative learning rate


Logo ABACOC Adaptive Ball Cover for Classification 1.0

by kikot - July 14, 2014, 16:27:03 CET [ BibTeX BibTeX for corresponding Paper Download ] 683 views, 173 downloads, 3 subscriptions

About: Online Action Recognition via Nonparametric Incremental Learning. Java and Matlab code already available. A Python version and the Java source code will be released soon.

Changes:

Initial release of the library, future changes will be advertised shortly.


Logo ARTOS Adaptive Realtime Object Detection System 1.0

by erik - July 11, 2014, 22:02:34 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 840 views, 146 downloads, 2 subscriptions

About: ARTOS can be used to quickly learn models for visual object detection without having to collect a set of samples manually. To make this possible, it uses ImageNet, a large image database with more than 20,000 categories.

Changes:

Initial Announcement on mloss.org.


Logo RankSVM NC 1.0

by rflamary - July 10, 2014, 15:51:21 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 801 views, 175 downloads, 1 subscription

About: This package is an implementation of a linear RankSVM solver with non-convex regularization.

Changes:

Initial Announcement on mloss.org.


Logo PyStruct 0.2

by t3kcit - July 9, 2014, 09:29:23 CET [ Project Homepage BibTeX Download ] 1756 views, 494 downloads, 1 subscription

About: PyStruct is a framework for learning structured prediction in Python. It has a modular interface, similar to the well-known SVMstruct. Apart from learning algorithms it also contains model formulations for popular CRFs and interfaces to many inference algorithm implementation.

Changes:

Initial Announcement on mloss.org.


Logo Semi Stochastic Gradient Descent 1.0

by konkey - July 9, 2014, 04:28:47 CET [ BibTeX BibTeX for corresponding Paper Download ] 739 views, 170 downloads, 1 subscription

About: Efficient implementation of Semi-Stochastic Gradient Descent algorithm (S2GD) for training logistic regression (L2-regularized).

Changes:

Initial Announcement on mloss.org.


Showing Items 31-40 of 540 on page 4 of 54: Previous 1 2 3 4 5 6 7 8 9 Next Last