Projects supporting the xrff data format.


Logo ADAMS 17.12.0

by fracpete - December 20, 2017, 09:38:32 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 33675 views, 6041 downloads, 3 subscriptions

About: The Advanced Data mining And Machine learning System (ADAMS) is a flexible workflow engine aimed at quickly building and maintaining data-driven, reactive workflows, easily integrated into business processes.

Changes:

Some highlights:

  • Code base was moved to Github
  • Nearly 90 new actors, 25 new conversions
  • much improved deeplearning4j module
  • experimental support for Microsoft's CNTK deep learning framework
  • rsync module
  • MEKA webservice module
  • improved support for image annotations
  • improved LaTeX support
  • Websocket support

Logo python weka wrapper3 0.1.3

by fracpete - August 23, 2017, 01:18:36 CET [ Project Homepage BibTeX Download ] 4752 views, 1050 downloads, 3 subscriptions

About: A thin Python3 wrapper that uses the javabridge Python library to communicate with a Java Virtual Machine executing Weka API calls.

Changes:
  • added check_for_modified_class_attribute method to FilterClassifier class
  • added complete_classname method to weka.core.classes module, which allows completion of partial classnames like .J48 to weka.classifiers.trees.J48; if there is a unique match; JavaObject.new_instance and JavaObject.check_type now make use of this functionality, allowing for instantiations like Classifier(cls=".J48")
  • jvm.start(system_cp=True) no longer fails with a KeyError: 'CLASSPATH' if there is no CLASSPATH environment variable defined
  • Libraries mtl.jar, core.jar and arpack_combined_all.jar were added as is to the weka.jar in the 3.9.1 release instead of adding their content to it. Repackaged weka.jar to fix this issue.

Logo python weka wrapper 0.3.11

by fracpete - August 23, 2017, 01:17:24 CET [ Project Homepage BibTeX Download ] 57135 views, 11488 downloads, 3 subscriptions

About: A thin Python wrapper that uses the javabridge Python library to communicate with a Java Virtual Machine executing Weka API calls.

Changes:
  • added check_for_modified_class_attribute method to FilterClassifier class
  • added complete_classname method to weka.core.classes module, which allows completion of partial classnames like .J48 to weka.classifiers.trees.J48; if there is a unique match; JavaObject.new_instance and JavaObject.check_type now make use of this functionality, allowing for instantiations like Classifier(cls=".J48")
  • jvm.start(system_cp=True) no longer fails with a KeyError: 'CLASSPATH' if there is no CLASSPATH environment variable defined
  • Libraries mtl.jar, core.jar and arpack_combined_all.jar were added as is to the weka.jar in the 3.9.1 release instead of adding their content to it. Repackaged weka.jar to fix this issue.

Logo MLWizard 5.2

by remat - July 26, 2012, 15:04:14 CET [ Project Homepage BibTeX Download ] 6778 views, 1548 downloads, 1 subscription

About: MLwizard recommends and optimizes classification algorithms based on meta-learning and is a software wizard fully integrated into RapidMiner but can be used as library as well.

Changes:

Faster parameter optimization using genetic algorithm with predefined start population.