About: Ran He, WeiShi Zheng,Tieniu Tan, and Zhenan Sun. Halfquadratic based Iterative Minimization for Robust Sparse Representation. Submitted to IEEE Trans. on Pattern Analysis and Machine Intelligence. Changes:Initial Announcement on mloss.org.

About: This archive contains a Matlab implementation of the Multilinear Principal Component Analysis (MPCA) algorithm and MPCA+LDA, as described in the paper Haiping Lu, K.N. Plataniotis, and A.N. Venetsanopoulos, "MPCA: Multilinear Principal Component Analysis of Tensor Objects", IEEE Transactions on Neural Networks, Vol. 19, No. 1, Page: 1839, January 2008. Changes:Initial Announcement on mloss.org.

About: Oboe is a software for Chinese syntactic parsing, and it can display syntactic trees in a graphical view with two kinds of representation: phrase tree and dependency tree. So it is very helpful for NLP researchers, especially for researchers focusing on syntaxbased methods. Changes:Initial Announcement on mloss.org.

About: mlpy is a Python module for Machine Learning built on top of NumPy/SciPy and of GSL. Changes:New features:
Fix:

About: This is demo program on global thresholding for image of bright small objects, such as aircrafts in airports. the program include four method, otsu,2DTsallis,PSSIM, Smoothnees Method. Changes:Initial Announcement on mloss.org.

About: Locally Weighted Projection Regression (LWPR) is a recent algorithm that achieves nonlinear function approximation in high dimensional spaces with redundant and irrelevant input dimensions. At its [...] Changes:Version 1.2.4

About: Nonnegative Sparse Coding, Discriminative Semisupervised Learning, sparse probability graph Changes:Initial Announcement on mloss.org.

About: Python module to ease pattern classification analyses of large datasets. It provides highlevel abstraction of typical processing steps (e.g. data preparation, classification, feature selection, [...] Changes:
This release aggregates all the changes occurred between official
releases in 0.4 series and various snapshot releases (in 0.5 and 0.6
series). To get better overview of high level changes see
:ref:
Also adapts changes from 0.4.6 and 0.4.7 (see corresponding changelogs).
This is a special release, because it has never seen the general public.
A summary of fundamental changes introduced in this development version
can be seen in the :ref: Most notably, this version was to first to come with a comprehensive twoday workshop/tutorial.
A bugfix release
A bugfix release

About: In this paper, we propose an improved principal component analysis based on maximum entropy (MaxEnt) preservation, called MaxEntPCA, which is derived from a Parzen window estimation of Renyi’s quadratic entropy. Instead of minimizing the reconstruction error either based on L2norm or L1norm, the MaxEntPCA attempts to preserve as much as possible the uncertainty information of the data measured by entropy. The optimal solution of MaxEntPCA consists of the eigenvectors of a Laplacian probability matrix corresponding to the MaxEnt distribution. MaxEntPCA (1) is rotation invariant, (2) is free from any distribution assumption, and (3) is robust to outliers. Extensive experiments on realworld datasets demonstrate the effectiveness of the proposed linear method as compared to other related robust PCA methods. Changes:Initial Announcement on mloss.org.

About: MetropolisHastings alogrithm is a Markov chain Monte Carlo method for obtaining a sequence of random samples from a probability distribution for which direct sampling is difficult. Thi sequence can be used to approximate the distribution. Changes:Initial Announcement on mloss.org.

About: This code is developed based on Uriel Roque's active set algorithm for the linear least squares problem with nonnegative variables in: Portugal, L.; Judice, J.; and Vicente, L. 1994. A comparison of block pivoting and interiorpoint algorithms for linear least squares problems with nonnegative variables. Mathematics of Computation 63(208):625643.Ran He, WeiShi Zheng and Baogang Hu, "Maximum Correntropy Criterion for Robust Face Recognition," IEEE TPAMI, in press, 2011. Changes:Initial Announcement on mloss.org.

About: Urheen is a toolkit for Chinese word segmentation, Chinese pos tagging, English tokenize, and English pos tagging. The Chinese word segmentation and pos tagging modules are trained with the Chinese Tree Bank 7.0. The English pos tagging module is trained with the WSJ English treebank(0223). Changes:Initial Announcement on mloss.org.

About: OpenPRNBEM is an C++ implementation of Naive Bayes Classifier, which is a wellknown generative classification algorithm for the application such as text classification. The Naive Bayes algorithm requires the probabilistic distribution to be discrete. OpenPRNBEM uses the multinomial event model for representation. The maximum likelihood estimate is used for supervised learning, and the expectationmaximization estimate is used for semisupervised and unsupervised learning. Changes:Initial Announcement on mloss.org.

About: This is a class to calculate histogram of LBP (local binary patterns) from an input image, histograms of LBPTOP (local binary patterns on three orthogonal planes) from an image sequence, histogram of the rotation invariant VLBP (volume local binary patterns) or uniform rotation invariant VLBP from an image sequence. Changes:Initial Announcement on mloss.org.

About: This program implements a novel robust sparse representation method, called the twostage sparse representation (TSR), for robust recognition on a largescale database. Based on the divide and conquer strategy, TSR divides the procedure of robust recognition into outlier detection stage and recognition stage. The extensive numerical experiments on several public databases demonstrate that the proposed TSR approach generally obtains better classification accuracy than the stateoftheart Sparse Representation Classification (SRC). At the same time, by using the TSR, a significant reduction of computational cost is reached by over fifty times in comparison with the SRC, which enables the TSR to be deployed more suitably for largescale dataset. Changes:Initial Announcement on mloss.org.

About: This is a implementation of the classic P3P(Perspective 3Points) algorithm problem solution in the Ransac paper "M. A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Comm. of the ACM, Vol 24, pp 381395, 1981.". The algorithm gives the four probable solutions of the P3P problem in about 0.1ms, and can be used as input of the consequent RANSAC step. The codes needs the numerics library VNL which is a part of the widely used computer vision library VXL. One can download & install it from http://vxl.sourceforge.net/. Changes:Initial Announcement on mloss.org.

About: It's a C++ program for symmetric matrix diagonalization, inversion and principal component anlaysis(PCA). The matrix diagonalization function can also be applied to the computation of singular value decomposition (SVD), Fisher linear discriminant analysis (FLDA) and kernel PCA (KPCA) if forming the symmetric matrix appropriately. Changes:Initial Announcement on mloss.org.

About: This program is a C++ implementation of Linear Discriminant Function Classifier. Discriminant functions such as perceptron criterion, cross entropy (CE) criterion, and least mean square (LMS) criterion (all for multiclass classification problems) are supported in it. The program uses a sparsedata structure to represent the feature vector to seek higher computational speed. Some other techniques such as online updating, weights averaging, gaussian prior regularization are also supported. Changes:Initial Announcement on mloss.org.

About: This program is a C++ implementation of Naive Bayes Classifier, which is a wellknown generative classification algorithm for the application such as text classification. The Naive Bayes algorithm requires the probabilistic distribution to be discrete. The program uses the multinomial event model for representation, the maximum likelihood estimate with a Laplace smoothing technique for learning parameters. A sparsedata structure is defined to represent the feature vector in the program to seek higher computational speed. Changes:Initial Announcement on mloss.org.
