About: The Accord.NET Framework is a .NET machine learning framework combined with audio and image processing libraries completely written in C#. It is a complete framework for building productiongrade computer vision, computer audition, signal processing and statistics applications even for commercial use. A comprehensive set of sample applications provide a fast start to get up and running quickly, and an extensive online documentation helps fill in the details. Changes:Adding a large number of new distributions, such as AndersonDaring, ShapiroWilk, Inverse ChiSquare, Lévy, Folded Normal, Shifted LogLogistic, Kumaraswamy, Trapezoidal, Uquadratic and BetaPrime distributions, BirnbaumSaunders, Generalized Normal, Gumbel, Power Lognormal, Power Normal, Triangular, Tukey Lambda, Logistic, Hyperbolic Secant, Degenerate and General Continuous distributions. Other additions include new statistical hypothesis tests such as AndersonDaring and ShapiroWilk; as well as support for all of LIBLINEAR's support vector machine algorithms; and format reading support for MATLAB/Octave matrices, LibSVM models, sparse LibSVM data files, and many others. For a complete list of changes, please see the full release notes at the release details page at: https://github.com/accordnet/framework/releases

About: The GPML toolbox is a flexible and generic Octave 3.2.x and Matlab 7.x implementation of inference and prediction in Gaussian Process (GP) models. Changes:

About: A Tool for Embedding Strings in Vector Spaces Changes:Fixed severe bug in concurrent computation of blended ngrams.

About: A community detection method based on constrained fractional set programming (CFSP). Changes:Initial Announcement on mloss.org.

About: Toeblitz is a MATLAB/Octave package for operations on positive definite Toeplitz matrices. It can solve Toeplitz systems Tx = b in O(n*log(n)) time and O(n) memory, compute matrix inverses T^(1) (with free log determinant) in O(n^2) time and memory, compute log determinants (without inverses) in O(n^2) time and O(n) memory, and compute traces of products A*T for any matrix A, in minimal O(n^2) time and memory. Changes:Adding a writeup in written/toeblitz.pdf describing the package.

About: A generalized version of spectral clustering using the graph pLaplacian. Changes:

About: The GPstuff toolbox is a versatile collection of Gaussian process models and computational tools required for inference. The tools include, among others, various inference methods, sparse approximations and model assessment methods. Changes:20140722 Version 4.5 New features
Improvements
Several minor bugfixes

About: Crino: a neuralnetwork library based on Theano Changes:1.0.0 (7 july 2014) :  Initial release of crino  Implements a torchlike library to build artificial neural networks (ANN)  Provides standard implementations for : * autoencoders * multilayer perceptrons (MLP) * deep neural networks (DNN) * input output deep architecture (IODA)  Provides a batchgradient backpropagation algorithm, with adaptative learning rate

About: Online Action Recognition via Nonparametric Incremental Learning. Java and Matlab code already available. A Python version and the Java source code will be released soon. Changes:Initial release of the library, future changes will be advertised shortly.

About: This package is an implementation of a linear RankSVM solver with nonconvex regularization. Changes:Initial Announcement on mloss.org.

About: MSVMpack is a Multiclass Support Vector Machine (MSVM) package. It is dedicated to SVMs which can handle more than two classes without relying on decomposition methods and implements the four MSVM models from the literature: Weston and Watkins MSVM, Crammer and Singer MSVM, Lee, Lin and Wahba MSVM, and the MSVM2 of Guermeur and Monfrini. Changes:

About: FEAST provides implementations of common mutual information based filter feature selection algorithms (mim, mifs, mrmr, cmim, icap, jmi, disr, fcbf, etc), and an implementation of RELIEF. Written for C/C++ & Matlab. Changes:

About: A mutual information library for C and Mex bindings for MATLAB. Aimed at feature selection, and provides simple methods to calculate mutual information, conditional mutual information, entropy, conditional entropy, Renyi entropy/mutual information, and weighted variants of Shannon entropies/mutual informations. Works with discrete distributions, and expects column vectors of features. Changes:Added weighted entropy functions. Fixed a few memory handling bugs.

About: ITE (Information Theoretical Estimators) is capable of estimating many different variants of entropy, mutual information, divergence, association measures, cross quantities and kernels on distributions. Thanks to its highly modular design, ITE supports additionally (i) the combinations of the estimation techniques, (ii) the easy construction and embedding of novel information theoretical estimators, and (iii) their immediate application in information theoretical optimization problems. Changes:

About: APRILANN toolkit (A Pattern Recognizer In Lua with Artificial Neural Networks). This toolkit incorporates ANN algorithms (as dropout, stacked denoising autoencoders, convolutional neural networks), with other pattern recognition methods as hidden makov models (HMMs) among others. Changes:

About: GradMC is an algorithm for MR motion artifact removal implemented in Matlab Changes:Added support for multirigid motion correction.

About: This is an optimization library based on Social Impact Theory(SITO). The optimizer works in the same way as PSO and GA. Changes:A new variant 'Continuous Opinion Dynamics Optimizer (CODO)' has been implemented in this version. Minor changes in implementation of objective function.

About: minFunc is a Matlab function for unconstrained optimization of differentiable realvalued multivariate functions using linesearch methods. It uses an interface very similar to the Matlab Optimization Toolbox function fminunc, and can be called as a replacement for this function. On many problems, minFunc requires fewer function evaluations to converge than fminunc (or minimize.m). Further it can optimize problems with a much larger number of variables (fminunc is restricted to several thousand variables), and uses a line search that is robust to several common function pathologies. Changes:Initial Announcement on mloss.org.

About: The glmie toolbox contains scalable estimation routines for GLMs (generalised linear models) and SLMs (sparse linear models) as well as an implementation of a scalable convex variational Bayesian inference relaxation. We designed the glmie package to be simple, generic and easily expansible. Most of the code is written in Matlab including some MEX files. The code is fully compatible to both Matlab 7.x and GNU Octave 3.2.x. Probabilistic classification, sparse linear modelling and logistic regression are covered in a common algorithmical framework allowing for both MAP estimation and approximate Bayesian inference. Changes:added factorial mean field inference as a third algorithm complementing expectation propagation and variational Bayes generalised nonGaussian potentials so that affine instead of linear functions of the latent variables can be used

About: This code is provided by Jun Wan. It is used in the Chalearn oneshot learning gesture challenge (round 2). This code includes: bag of features, 3D MoSIFT, EMoSIFT and SMoSIFT features. Changes:Initial Announcement on mloss.org.
