Projects supporting the libsvm format data format.

Logo SALSA.jl 0.0.5

by jumutc - September 28, 2015, 17:28:56 CET [ Project Homepage BibTeX Download ] 1849 views, 378 downloads, 1 subscription

About: SALSA (Software lab for Advanced machine Learning with Stochastic Algorithms) is an implementation of the well-known stochastic algorithms for Machine Learning developed in the high-level technical computing language Julia. The SALSA software package is designed to address challenges in sparse linear modelling, linear and non-linear Support Vector Machines applied to large data samples with user-centric and user-friendly emphasis.


Initial Announcement on

Logo Accord.NET Framework 2.14.0

by cesarsouza - December 9, 2014, 23:04:04 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 34899 views, 6034 downloads, 2 subscriptions

About: The Accord.NET Framework is a .NET machine learning framework combined with audio and image processing libraries completely written in C#. It is a complete framework for building production-grade computer vision, computer audition, signal processing and statistics applications even for commercial use. A comprehensive set of sample applications provide a fast start to get up and running quickly, and an extensive online documentation helps fill in the details.


Adding a large number of new distributions, such as Anderson-Daring, Shapiro-Wilk, Inverse Chi-Square, Lévy, Folded Normal, Shifted Log-Logistic, Kumaraswamy, Trapezoidal, U-quadratic and BetaPrime distributions, Birnbaum-Saunders, Generalized Normal, Gumbel, Power Lognormal, Power Normal, Triangular, Tukey Lambda, Logistic, Hyperbolic Secant, Degenerate and General Continuous distributions.

Other additions include new statistical hypothesis tests such as Anderson-Daring and Shapiro-Wilk; as well as support for all of LIBLINEAR's support vector machine algorithms; and format reading support for MATLAB/Octave matrices, LibSVM models, sparse LibSVM data files, and many others.

For a complete list of changes, please see the full release notes at the release details page at:

Logo JMLR EnsembleSVM 2.0

by claesenm - March 31, 2014, 08:06:20 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 14158 views, 4598 downloads, 2 subscriptions

About: The EnsembleSVM library offers functionality to perform ensemble learning using Support Vector Machine (SVM) base models. In particular, we offer routines for binary ensemble models using SVM base classifiers. Experimental results have shown the predictive performance to be comparable with standard SVM models but with drastically reduced training time. Ensemble learning with SVM models is particularly useful for semi-supervised tasks.


The library has been updated and features a variety of new functionality as well as more efficient implementations of original features. The following key improvements have been made:

  1. Support for multithreading in training and prediction with ensemble models. Since both of these are embarassingly parallel, this has induced a significant speedup (3-fold on quad-core).
  2. Extensive programming framework for aggregation of base model predictions which allows highly efficient prototyping of new aggregation approaches. Additionally we provide several predefined strategies, including (weighted) majority voting, logistic regression and nonlinear SVMs of your choice -- be sure to check out the esvm-edit tool! The provided framework also allows you to efficiently program your own, novel aggregation schemes.
  3. Full code transition to C++11, the latest C++ standard, which enabled various performance improvements. The new release requires moderately recent compilers, such as gcc 4.7.2+ or clang 3.2+.
  4. Generic implementations of convenient facilities have been added, such as thread pools, deserialization factories and more.

The API and ABI have undergone significant changes, many of which are due to the transition to C++11.

Logo JMLR BudgetedSVM v1.1

by nemanja - February 12, 2014, 20:53:45 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 4578 views, 840 downloads, 1 subscription

About: BudgetedSVM is an open-source C++ toolbox for scalable non-linear classification. The toolbox can be seen as a missing link between LibLinear and LibSVM, combining the efficiency of linear with the accuracy of kernel SVM. We provide an Application Programming Interface for efficient training and testing of non-linear classifiers, supported by data structures designed for handling data which cannot fit in memory. We also provide command-line and Matlab interfaces, providing users with an efficient, easy-to-use tool for large-scale non-linear classification.


Changed license from LGPL v3 to Modified BSD.