Projects supporting the hdf data format.

Logo Armadillo library 6.100

by cu24gjf - October 3, 2015, 07:12:38 CET [ Project Homepage BibTeX Download ] 65006 views, 13219 downloads, 5 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 3 votes)

About: Armadillo is a template C++ linear algebra library aiming towards a good balance between speed and ease of use, with a function syntax similar to MATLAB. Matrix decompositions are provided through optional integration with LAPACK, or one of its high performance drop-in replacements (eg. Intel MKL, OpenBLAS).

  • faster norm() and normalise() when using Intel MKL, ATLAS or OpenBLAS
  • faster handling of compound expressions by join_rows() and join_cols()
  • added Schur decomposition: schur()
  • added .each_slice() for repeated matrix operations on each slice of a cube
  • expanded join_slices() to handle joining cubes with matrices
  • expanded .each_col() and .each_row() to handle out-of-place operations
  • stricter handling of matrix objects by hist() and histc()
  • Cube class now delays allocation of .slice() related structures until needed

Logo BayesPy 0.3.7

by jluttine - September 23, 2015, 14:29:20 CET [ Project Homepage BibTeX Download ] 8187 views, 1995 downloads, 3 subscriptions

About: Variational Bayesian inference tools for Python

  • Enable keyword arguments when plotting via the inference engine
  • Add initial support for logging

Logo JMLR SHOGUN 4.0.0

by sonne - February 5, 2015, 09:09:37 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 99125 views, 14045 downloads, 6 subscriptions

Rating Whole StarWhole StarWhole StarEmpty StarEmpty Star
(based on 6 votes)

About: The SHOGUN machine learning toolbox's focus is on large scale learning methods with focus on Support Vector Machines (SVM), providing interfaces to python, octave, matlab, r and the command line.


This release features the work of our 8 GSoC 2014 students [student; mentors]:

  • OpenCV Integration and Computer Vision Applications [Abhijeet Kislay; Kevin Hughes]
  • Large-Scale Multi-Label Classification [Abinash Panda; Thoralf Klein]
  • Large-scale structured prediction with approximate inference [Jiaolong Xu; Shell Hu]
  • Essential Deep Learning Modules [Khaled Nasr; Sergey Lisitsyn, Theofanis Karaletsos]
  • Fundamental Machine Learning: decision trees, kernel density estimation [Parijat Mazumdar ; Fernando Iglesias]
  • Shogun Missionary & Shogun in Education [Saurabh Mahindre; Heiko Strathmann]
  • Testing and Measuring Variable Interactions With Kernels [Soumyajit De; Dino Sejdinovic, Heiko Strathmann]
  • Variational Learning for Gaussian Processes [Wu Lin; Heiko Strathmann, Emtiyaz Khan]

It also contains several cleanups and bugfixes:


  • New Shogun project description [Heiko Strathmann]
  • ID3 algorithm for decision tree learning [Parijat Mazumdar]
  • New modes for PCA matrix factorizations: SVD & EVD, in-place or reallocating [Parijat Mazumdar]
  • Add Neural Networks with linear, logistic and softmax neurons [Khaled Nasr]
  • Add kernel multiclass strategy examples in multiclass notebook [Saurabh Mahindre]
  • Add decision trees notebook containing examples for ID3 algorithm [Parijat Mazumdar]
  • Add sudoku recognizer ipython notebook [Alejandro Hernandez]
  • Add in-place subsets on features, labels, and custom kernels [Heiko Strathmann]
  • Add Principal Component Analysis notebook [Abhijeet Kislay]
  • Add Multiple Kernel Learning notebook [Saurabh Mahindre]
  • Add Multi-Label classes to enable Multi-Label classification [Thoralf Klein]
  • Add rectified linear neurons, dropout and max-norm regularization to neural networks [Khaled Nasr]
  • Add C4.5 algorithm for multiclass classification using decision trees [Parijat Mazumdar]
  • Add support for arbitrary acyclic graph-structured neural networks [Khaled Nasr]
  • Add CART algorithm for classification and regression using decision trees [Parijat Mazumdar]
  • Add CHAID algorithm for multiclass classification and regression using decision trees [Parijat Mazumdar]
  • Add Convolutional Neural Networks [Khaled Nasr]
  • Add Random Forests algorithm for ensemble learning using CART [Parijat Mazumdar]
  • Add Restricted Botlzmann Machines [Khaled Nasr]
  • Add Stochastic Gradient Boosting algorithm for ensemble learning [Parijat Mazumdar]
  • Add Deep contractive and denoising autoencoders [Khaled Nasr]
  • Add Deep belief networks [Khaled Nasr]


  • Fix reference counting bugs in CList when reference counting is on [Heiko Strathmann, Thoralf Klein, lambday]
  • Fix memory problem in PCA::apply_to_feature_matrix [Parijat Mazumdar]
  • Fix crash in LeastAngleRegression for the case D greater than N [Parijat Mazumdar]
  • Fix memory violations in bundle method solvers [Thoralf Klein]
  • Fix fail in library_mldatahdf5.cpp example when is not working properly [Parijat Mazumdar]
  • Fix memory leaks in Vowpal Wabbit, LibSVMFile and KernelPCA [Thoralf Klein]
  • Fix memory and control flow issues discovered by Coverity [Thoralf Klein]
  • Fix R modular interface SWIG typemap (Requires SWIG >= 2.0.5) [Matt Huska]

Cleanup and API Changes

  • PCA now depends on Eigen3 instead of LAPACK [Parijat Mazumdar]
  • Removing redundant and fixing implicit imports [Thoralf Klein]
  • Hide many methods from SWIG, reducing compile memory by 500MiB [Heiko Strathmann, Fernando Iglesias, Thoralf Klein]

Logo JMLR MLPACK 1.0.12

by rcurtin - January 7, 2015, 19:23:51 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 47292 views, 8979 downloads, 6 subscriptions

Rating Whole StarWhole StarWhole StarWhole Star1/2 Star
(based on 1 vote)

About: A scalable, fast C++ machine learning library, with emphasis on usability.

  • Switch to 3-clause BSD license.

Logo OptWok 0.3.1

by ong - May 2, 2013, 10:46:11 CET [ Project Homepage BibTeX Download ] 9159 views, 1790 downloads, 1 subscription

About: A collection of python code to perform research in optimization. The aim is to provide reusable components that can be quickly applied to machine learning problems. Used in: - Ellipsoidal multiple instance learning - difference of convex functions algorithms for sparse classfication - Contextual bandits upper confidence bound algorithm (using GP) - learning output kernels, that is kernels between the labels of a classifier.

  • minor bugfix

Logo OpenGM 2 2.0.2 beta

by opengm - June 1, 2012, 14:33:53 CET [ Project Homepage BibTeX Download ] 3151 views, 763 downloads, 1 subscription

About: A C++ Library for Discrete Graphical Models


Initial Announcement on

Logo Marray 2.2

by andres - July 6, 2011, 01:27:44 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 3779 views, 928 downloads, 1 subscription

About: Fast Runtime-Flexible Multi-dimensional Arrays and Views for C++


Initial Announcement on

Logo svn-r1070-Apr-2011

by sonne - April 8, 2011, 10:15:49 CET [ Project Homepage BibTeX Download ] 4532 views, 981 downloads, 1 subscription

About: The source code of the site - a community portal for machine learning data sets.


Initial Announcement on

Logo mldata-utils 0.5.0

by sonne - April 8, 2011, 10:02:44 CET [ Project Homepage BibTeX Download ] 24369 views, 5205 downloads, 1 subscription

About: Tools to convert datasets from various formats to various formats, performance measures and API functions to communicate with

  • Change task file format, such that data splits can have a variable number items and put into up to 256 categories of training/validation/test/not used/...
  • Various bugfixes.

About: OpenGM is a free C++ template library, a command line tool and a set of MATLAB functions for optimization in higher order graphical models. Graphical models of any order and structure can be built either in C++ or in MATLAB, using simple and intuitive commands. These models can be stored in HDF5 files and subjected to state-of-the-art optimization algorithms via the OpenGM command line optimizer. All library functions can also be called directly from C++ code. OpenGM realizes the Inference Algorithm Interface (IAI), a concept that makes it easy for programmers to use their own algorithms and factor classes with OpenGM.


Initial Announcement on