Projects authored by victoria lopez.


Logo KEEL Knowledge Extraction based on Evolutionary Learning 3.0

by keel - September 18, 2015, 12:38:54 CET [ Project Homepage BibTeX Download ] 3067 views, 738 downloads, 1 subscription

About: KEEL (Knowledge Extraction based on Evolutionary Learning) is an open source (GPLv3) Java software tool that can be used for a large number of different knowledge data discovery tasks. KEEL provides a simple GUI based on data flow to design experiments with different datasets and computational intelligence algorithms (paying special attention to evolutionary algorithms) in order to assess the behavior of the algorithms. It contains a wide variety of classical knowledge extraction algorithms, preprocessing techniques (training set selection, feature selection, discretization, imputation methods for missing values, among others), computational intelligence based learning algorithms, hybrid models, statistical methodologies for contrasting experiments and so forth. It allows to perform a complete analysis of new computational intelligence proposals in comparison to existing ones. Moreover, KEEL has been designed with a two-fold goal: research and educational. KEEL is also coupled with KEEL-dataset: a webpage that aims at providing to the machine learning researchers a set of benchmarks to analyze the behavior of the learning methods. Concretely, it is possible to find benchmarks already formatted in KEEL format for classification (such as standard, multi instance or imbalanced data), semi-supervised classification, regression, time series and unsupervised learning. Also, a set of low quality data benchmarks is maintained in the repository.

Changes:

Initial Announcement on mloss.org.