Projects authored by hannes nickisch.


Logo JMLR GPML Gaussian Processes for Machine Learning Toolbox 4.0

by hn - October 19, 2016, 10:15:05 CET [ Project Homepage BibTeX Download ] 38872 views, 8722 downloads, 5 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarWhole Star
(based on 2 votes)

About: The GPML toolbox is a flexible and generic Octave/Matlab implementation of inference and prediction with Gaussian process models. The toolbox offers exact inference, approximate inference for non-Gaussian likelihoods (Laplace's Method, Expectation Propagation, Variational Bayes) as well for large datasets (FITC, VFE, KISS-GP). A wide range of covariance, likelihood, mean and hyperprior functions allows to create very complex GP models.

Changes:

A major code restructuring effort did take place in the current release unifying certain inference functions and allowing more flexibility in covariance function composition. We also redesigned the whole derivative computation pipeline to strongly improve the overall runtime. We finally include grid-based covariance approximations natively.

More generic sparse approximation using Power EP

  • unified treatment of FITC approximation, variational approaches VFE and hybrids

  • inducing input optimisation for all (compositions of) covariance functions dropping the previous limitation to a few standard examples

  • infFITC is now covered by the more generic infGaussLik function

Approximate covariance object unifying sparse approximations, grid-based approximations and exact covariance computations

  • implementation in cov/apx, cov/apxGrid, cov/apxSparse

  • generic infGaussLik unifies infExact, infFITC and infGrid

  • generic infLaplace unifies infLaplace, infFITC_Laplace and infGrid_Laplace

Hiearchical structure of covariance functions

  • clear hierachical compositional implementation

  • no more code duplication as present in covSEiso and covSEard pairs

  • two mother covariance functions

    • covDot for dot-product-based covariances and

    • covMaha for Mahalanobis-distance-based covariances

  • a variety of modifiers: eye, iso, ard, proj, fact, vlen

  • more flexibility as more variants are available and possible

  • all covariance functions offer derivatives w.r.t. inputs

Faster derivative computations for mean and cov functions

  • switched from partial derivatives to directional derivatives

  • simpler and more concise interface of mean and cov functions

  • much faster marginal likelihood derivative computations

  • simpler and more compact code

New mean functions

  • new mean/meanWSPC (Weighted Sum of Projected Cosines or Random Kitchen Sink features) following a suggestion by William Herlands

  • new mean/meanWarp for constructing a new mean from an existing one by means of a warping function adapted from William Herlands

New optimizer

  • added a new minimize_minfunc, contributed by Truong X. Nghiem

New GLM link function

  • added the twice logistic link function util/glm_invlink_logistic2

Smaller fixes

  • two-fold speedup of util/elsympol used by covADD by Truong X. Nghiem

  • bugfix in util/logphi as reported by John Darby


Logo GradMC 2.00

by tur - April 14, 2014, 15:48:48 CET [ BibTeX Download ] 4326 views, 1367 downloads, 1 subscription

About: GradMC is an algorithm for MR motion artifact removal implemented in Matlab

Changes:

Added support for multi-rigid motion correction.


About: The glm-ie toolbox contains scalable estimation routines for GLMs (generalised linear models) and SLMs (sparse linear models) as well as an implementation of a scalable convex variational Bayesian inference relaxation. We designed the glm-ie package to be simple, generic and easily expansible. Most of the code is written in Matlab including some MEX files. The code is fully compatible to both Matlab 7.x and GNU Octave 3.2.x. Probabilistic classification, sparse linear modelling and logistic regression are covered in a common algorithmical framework allowing for both MAP estimation and approximate Bayesian inference.

Changes:

added factorial mean field inference as a third algorithm complementing expectation propagation and variational Bayes

generalised non-Gaussian potentials so that affine instead of linear functions of the latent variables can be used


About: The gmm toolbox contains code for density estimation using mixtures of Gaussians: Starting from simple kernel density estimation with spherical and diagonal Gaussian kernels over manifold Parzen window until mixtures of penalised full Gaussians with only a few components. The toolbox covers many Gaussian mixture model parametrisations from the recent literature. Most prominently, the package contains code to use the Gaussian Process Latent Variable Model for density estimation. Most of the code is written in Matlab 7.x including some MEX files.

Changes:

Initial Announcement on mloss.org


Logo FWTN 1.0

by hn - March 25, 2010, 16:58:24 CET [ Project Homepage BibTeX Download ] 6020 views, 1448 downloads, 1 subscription

About: Orthonormal wavelet transform for D dimensional tensors in L levels. Generic quadrature mirror filters and tensor sizes. Runtime is O(n), plain C, MEX-wrapper and demo provided.

Changes:

Initial Announcement on mloss.org.