All entries.
Showing Items 291-300 of 552 on page 30 of 56: First Previous 25 26 27 28 29 30 31 32 33 34 35 Next Last

Logo Metropolis Hastings algorithm 1.0.0

by openpr_nlpr - December 2, 2011, 05:43:20 CET [ Project Homepage BibTeX Download ] 1532 views, 392 downloads, 1 subscription

About: Metropolis-Hastings alogrithm is a Markov chain Monte Carlo method for obtaining a sequence of random samples from a probability distribution for which direct sampling is difficult. Thi sequence can be used to approximate the distribution.

Changes:

Initial Announcement on mloss.org.


About: This code is developed based on Uriel Roque's active set algorithm for the linear least squares problem with nonnegative variables in: Portugal, L.; Judice, J.; and Vicente, L. 1994. A comparison of block pivoting and interior-point algorithms for linear least squares problems with nonnegative variables. Mathematics of Computation 63(208):625-643.Ran He, Wei-Shi Zheng and Baogang Hu, "Maximum Correntropy Criterion for Robust Face Recognition," IEEE TPAMI, in press, 2011.

Changes:

Initial Announcement on mloss.org.


Logo Urheen 1.0.0

by openpr_nlpr - December 2, 2011, 05:40:08 CET [ Project Homepage BibTeX Download ] 1534 views, 406 downloads, 1 subscription

About: Urheen is a toolkit for Chinese word segmentation, Chinese pos tagging, English tokenize, and English pos tagging. The Chinese word segmentation and pos tagging modules are trained with the Chinese Tree Bank 7.0. The English pos tagging module is trained with the WSJ English treebank(02-23).

Changes:

Initial Announcement on mloss.org.


Logo Naive Bayes EM Algorithm 1.0.0

by openpr_nlpr - December 2, 2011, 05:35:09 CET [ Project Homepage BibTeX Download ] 2420 views, 545 downloads, 1 subscription

About: OpenPR-NBEM is an C++ implementation of Naive Bayes Classifier, which is a well-known generative classification algorithm for the application such as text classification. The Naive Bayes algorithm requires the probabilistic distribution to be discrete. OpenPR-NBEM uses the multinomial event model for representation. The maximum likelihood estimate is used for supervised learning, and the expectation-maximization estimate is used for semi-supervised and un-supervised learning.

Changes:

Initial Announcement on mloss.org.


Logo Local Binary Pattern 1.0.0

by openpr_nlpr - December 2, 2011, 05:33:44 CET [ Project Homepage BibTeX Download ] 1630 views, 556 downloads, 1 subscription

About: This is a class to calculate histogram of LBP (local binary patterns) from an input image, histograms of LBP-TOP (local binary patterns on three orthogonal planes) from an image sequence, histogram of the rotation invariant VLBP (volume local binary patterns) or uniform rotation invariant VLBP from an image sequence.

Changes:

Initial Announcement on mloss.org.


Logo Two stage Sparse Representation 1.0.0

by openpr_nlpr - December 2, 2011, 05:32:31 CET [ Project Homepage BibTeX Download ] 1300 views, 442 downloads, 1 subscription

About: This program implements a novel robust sparse representation method, called the two-stage sparse representation (TSR), for robust recognition on a large-scale database. Based on the divide and conquer strategy, TSR divides the procedure of robust recognition into outlier detection stage and recognition stage. The extensive numerical experiments on several public databases demonstrate that the proposed TSR approach generally obtains better classification accuracy than the state-of-the-art Sparse Representation Classification (SRC). At the same time, by using the TSR, a significant reduction of computational cost is reached by over fifty times in comparison with the SRC, which enables the TSR to be deployed more suitably for large-scale dataset.

Changes:

Initial Announcement on mloss.org.


Logo Perspective 3 Points Solver 1.0.0

by openpr_nlpr - December 2, 2011, 05:31:04 CET [ Project Homepage BibTeX Download ] 1379 views, 414 downloads, 1 subscription

About: This is a implementation of the classic P3P(Perspective 3-Points) algorithm problem solution in the Ransac paper "M. A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Comm. of the ACM, Vol 24, pp 381-395, 1981.". The algorithm gives the four probable solutions of the P3P problem in about 0.1ms, and can be used as input of the consequent RANSAC step. The codes needs the numerics library VNL which is a part of the widely used computer vision library VXL. One can download & install it from http://vxl.sourceforge.net/.

Changes:

Initial Announcement on mloss.org.


Logo CMatrix Class 1.0.0

by openpr_nlpr - December 2, 2011, 05:28:41 CET [ Project Homepage BibTeX Download ] 1410 views, 415 downloads, 1 subscription

About: It's a C++ program for symmetric matrix diagonalization, inversion and principal component anlaysis(PCA). The matrix diagonalization function can also be applied to the computation of singular value decomposition (SVD), Fisher linear discriminant analysis (FLDA) and kernel PCA (KPCA) if forming the symmetric matrix appropriately.

Changes:

Initial Announcement on mloss.org.


Logo Linear Discriminant Function Classifier 1.0.0

by openpr_nlpr - December 2, 2011, 05:27:27 CET [ Project Homepage BibTeX Download ] 1243 views, 354 downloads, 1 subscription

About: This program is a C++ implementation of Linear Discriminant Function Classifier. Discriminant functions such as perceptron criterion, cross entropy (CE) criterion, and least mean square (LMS) criterion (all for multi-class classification problems) are supported in it. The program uses a sparse-data structure to represent the feature vector to seek higher computational speed. Some other techniques such as online updating, weights averaging, gaussian prior regularization are also supported.

Changes:

Initial Announcement on mloss.org.


Logo Naive Bayes Classifier 1.0.0

by openpr_nlpr - December 2, 2011, 05:25:44 CET [ Project Homepage BibTeX Download ] 2184 views, 560 downloads, 1 subscription

About: This program is a C++ implementation of Naive Bayes Classifier, which is a well-known generative classification algorithm for the application such as text classification. The Naive Bayes algorithm requires the probabilistic distribution to be discrete. The program uses the multinomial event model for representation, the maximum likelihood estimate with a Laplace smoothing technique for learning parameters. A sparse-data structure is defined to represent the feature vector in the program to seek higher computational speed.

Changes:

Initial Announcement on mloss.org.


Showing Items 291-300 of 552 on page 30 of 56: First Previous 25 26 27 28 29 30 31 32 33 34 35 Next Last